11 research outputs found

    Isoquinoline-1,3-diones as Selective Inhibitors of Tyrosyl DNA Phosphodiesterase II (TDP2)

    No full text
    Tyrosyl DNA phosphodiesterase II (TDP2) is a recently discovered enzyme that specifically repairs DNA damages induced by topoisomerase II (Top2) poisons and causes resistance to these drugs. Inhibiting TDP2 is expected to enhance the efficacy of clinically important Top2-targeting anticancer drugs. However, TDP2 as a therapeutic target remains poorly understood. We report herein the discovery of isoquinoline-1,3-dione as a viable chemotype for selectively inhibiting TDP2. The initial hit compound <b>43</b> was identified by screening our in-house collection of synthetic compounds. Further structure–activity relationship (SAR) studies identified numerous analogues inhibiting TDP2 in low micromolar range without appreciable inhibition against the homologous TDP1 at the highest testing concentration (111 μM). The best compound <b>64</b> inhibited recombinant TDP2 with an IC<sub>50</sub> of 1.9 μM. The discovery of this chemotype may provide a platform toward understanding TDP2 as a drug target

    Synthesis and Biological Evaluation of Nitrated 7‑, 8‑, 9‑, and 10-Hydroxyindenoisoquinolines as Potential Dual Topoisomerase I (Top1)–Tyrosyl-DNA Phosphodiesterase I (TDP1) Inhibitors

    No full text
    The structure–activity relationships and hit-to-lead optimization of dual Top1–TDP1 inhibitors in the indenoisoquinoline drug class were investigated. A series of nitrated 7-, 8-, 9-, and 10-hydroxyindenoisoquinolines were synthesized and evaluated. Several compounds displayed potent dual Top1–TDP1 inhibition. The 9-hydroxy series exhibited potencies and cytotoxicities vs Top1 that surpassed those of camptothecin (CPT), the natural alkaloid that is being used as a standard in the Top1-mediated DNA cleavage assay. One member of this series was a more potent Top1 inhibitor at a concentration of 5 nM and produced a more stable ternary drug–DNA–Top1 cleavage complex than CPT

    Investigation of the Structure–Activity Relationships of Aza-A-Ring Indenoisoquinoline Topoisomerase I Poisons

    No full text
    Several indenoisoquinolines have shown promise as anticancer agents in clinical trials. Incorporation of a nitrogen atom into the indenoisoquinoline scaffold offers the possibility of favorably modulating ligand-binding site interactions, physicochemical properties, and biological activities. Four series of aza-A-ring indenoisoquinolines were synthesized in which the nitrogen atom was systematically rotated through positions 1, 2, 3, and 4. The resulting compounds were tested to establish the optimal nitrogen position for topoisomerase IB (Top1) enzyme poisoning activity and cytotoxicity to human cancer cells. The 4-aza compounds were the most likely to yield derivatives with high Top1 inhibitory activity. However, the relationship between structure and cytotoxicity was more complicated since the potency was influenced strongly by the side chains on the lactam nitrogen. The most cytotoxic azaindenoisoquinolines <b>45</b> and <b>46</b> had nitrogen in the 2- or 3-positions and a 3′-dimethylaminopropyl side chain, and they had MGM GI<sub>50</sub> values that were slightly better than the corresponding indenoisoquinoline <b>64</b>

    Investigation of the Structure–Activity Relationships of Aza-A-Ring Indenoisoquinoline Topoisomerase I Poisons

    No full text
    Several indenoisoquinolines have shown promise as anticancer agents in clinical trials. Incorporation of a nitrogen atom into the indenoisoquinoline scaffold offers the possibility of favorably modulating ligand-binding site interactions, physicochemical properties, and biological activities. Four series of aza-A-ring indenoisoquinolines were synthesized in which the nitrogen atom was systematically rotated through positions 1, 2, 3, and 4. The resulting compounds were tested to establish the optimal nitrogen position for topoisomerase IB (Top1) enzyme poisoning activity and cytotoxicity to human cancer cells. The 4-aza compounds were the most likely to yield derivatives with high Top1 inhibitory activity. However, the relationship between structure and cytotoxicity was more complicated since the potency was influenced strongly by the side chains on the lactam nitrogen. The most cytotoxic azaindenoisoquinolines <b>45</b> and <b>46</b> had nitrogen in the 2- or 3-positions and a 3′-dimethylaminopropyl side chain, and they had MGM GI<sub>50</sub> values that were slightly better than the corresponding indenoisoquinoline <b>64</b>

    Discovery of Potent Indenoisoquinoline Topoisomerase I Poisons Lacking the 3‑Nitro Toxicophore

    No full text
    3-Nitroindenoisoquinoline human topoisomerase IB (Top1) poisons have potent antiproliferative effects on cancer cells. The undesirable nitro toxicophore could hypothetically be replaced by other functional groups that would retain the desired biological activities and minimize potential safety risks. Eleven series of indenoisoquinolines bearing 3-nitro bioisosteres were synthesized. The molecules were evaluated in the Top1-mediated DNA cleavage assay and in the National Cancer Institute’s 60 cell line cytotoxicity assay. The data reveal that fluorine and chlorine may substitute for the 3-nitro group with minimal loss of Top1 poisoning activity. The new information gained from these efforts can be used to design novel indenoisoquinolines with improved safety

    Advanced Monitoring Is Associated with Fewer Alarm Events During Planned Moderate Procedure-Related Sedation

    No full text
    BackgroundDiagnostic and interventional procedures are often facilitated by moderate procedure-related sedation. Many studies support the overall safety of this sedation; however, adverse cardiovascular and respiratory events are reported in up to 70% of these procedures, more frequently in very young, very old, or sicker patients. Monitoring with pulse oximetry may underreport hypoventilation during sedation, particularly if supplemental oxygen is provided. Capnometry may result in false alarms during sedation when patients mouth breathe or displace sampling devices. Advanced monitor use during sedation may allow event detection before complications develop. This 2-part pilot study used advanced monitors during planned moderate sedation to (1) determine incidences of desaturation, low respiratory rate, and deeper than intended sedation alarm events; and (2) determine whether advanced monitor use is associated with fewer alarm events.MethodsAdult patients undergoing scheduled gastroenterology or interventional radiology procedures with planned moderate sedation given by dedicated sedation nurses under the direction of procedural physicians (procedural sedation team) were monitored per standard protocols (electrocardiography blood pressure, pulse oximetry, and capnometry) and advanced monitors (acoustic respiratory monitoring and processed electroencephalograpy). Data were collected to computers for analysis. Advanced monitor parameters were not visible to teams in part 1 (standard) but were visible to teams in part 2 (advanced). Alarm events were defined as desaturation-SpO2 ≤92%; respiratory depression, acoustic respiratory rate ≤8 breaths per minute, and deeper than intended sedation, indicated by processed electroencephalograpy. The number of alarm events was compared.ResultsOf 100 patients enrolled, 10 were excluded for data collection computer malfunction or consent withdrawal. Data were analyzed from 90 patients (44 standard and 46 advanced). Advanced had fewer total alarms than standard (Wilcoxon-Mann-Whitney = 2.073, P = 0.038; Wilcoxon-Mann-Whitney odds, 1.67; 95% confidence interval [CI], 1.04-2.88). Similar numbers of standard and advanced had ≥1 alarm event (Wald difference, -10.2%; 95% CI, -26.4% to 7.0%; P = 0.237). Fewer advanced patients had ≥1 respiratory depression event (Wald difference, -22.1%; 95% CI, -40.9% to -2.4%; P = 0.036) or ≥1 desaturation event (Wald difference, -24.2%; 95% CI, -42.8% to -3.6%; P = 0.021); but there was no significant difference in deeper than intended sedation events (Wald difference, -1.38%; 95% CI, -20.21% to 17.49%; P = 0.887).ConclusionsUse of advanced monitoring parameters during planned moderate sedation was associated with fewer alarm events, patients experiencing desaturation, and patients experiencing respiratory depression alarm events. This pilot study suggests that further study into the safety and outcome impacts of advanced monitoring during procedure-related sedation is warranted
    corecore