641 research outputs found

    Deprotonative metalation of five-membered aromatic heterocycles using mixed lithium-zinc species

    No full text
    International audienceDeprotonation of benzoxazole, benzothiazole, benzo[b]thiophene, benzo[b]furan, N-Boc protected indole and pyrrole, and N-phenylpyrazole using an in situ mixture of ZnCl2*TMEDA (0.5 equiv) and lithium 2,2,6,6-tetramethylpiperidide (1.5 equiv) in THF at room temperature was described. The reaction was evidenced by trapping with iodine, regioselectively giving the expected functionalized derivatives in 52 to 73% yields. A mixture of mono- and disubstituted derivatives was obtained starting from thiazole. Cross-coupling reactions of 2-metalated benzo[b]thiophene and benzo[b]furan with heteroaromatic chlorides proved possible under palladium catalysis. A reaction pathway where the lithium amide and zinc diamide present in solution behave synergically was proposed for the deprotonation reaction, taking account of NMR and DFT studies carried out on the basic mixture

    Lithium cadmate-mediated deprotonative metalation of anisole: experimental and computational study

    No full text
    International audienceLithium cadmates bearing different ligands were compared with efficient (TMP)(3)CdLi (TMP = 2,2,6,6-tetramethylpiperidino) for their ability to deprotometalate anisole. The generated arylcadmates were evidenced using I(2). The results show that it is possible to replace only one of the TMP (with a piperidino, a diisopropylamino, a butyl, or a sec-butyl) without important yield drop. In the light of DFT calculations, reaction pathways were proposed for the deprotocadmations of anisole using a triamino, an alkyldiamino, and an aminodialkyl cadmat

    Deprotonative Cadmation of Functionalized Aromatics

    No full text
    International audienceThis communication describes the deproto-metalation of a large range of aromatics including heterocycles using a newly developed lithium-cadmium base. The reaction proceeds at room temperature with an excellent chemoselectivity and efficiency, and proved to be regioselective in most cases

    Judgment Aggregation with Abstentions under Voters' Hierarchy

    Get PDF
    International audienceSimilar to Arrow’s impossibility theorem for preference aggregation, judgment aggregation has also an intrinsic impossibility for generating consistent group judgment from individual judgments. Removing some of the pre-assumed conditions would mitigate the problem but may still lead to too restrictive solutions. It was proved that if completeness is removed but other plausible conditions are kept, the only possible aggregation functions are oligarchic, which means that the group judgment is purely determined by a certain subset of participating judges. Instead of further challenging the other conditions, this paper investigates how the judgment from each individual judge affects the group judgment in an oligarchic environment. We explore a set of intuitively demanded conditions under abstentions and design a feasible judgment aggregation rule based on the agents’ hierarchy. We show this proposed aggregation rule satisfies the desirable conditions. More importantly, this rule is oligarchic with respect to a subset of agenda instead of the whole agenda due to its literal-based characteristics

    Receptor regulation of osmolyte homeostasis in neural cells

    Full text link
    The capacity of cells to correct their volume in response to hyposmotic stress via the efflux of inorganic and organic osmolytes is well documented. However, the ability of cell-surface receptors, in particular G-protein-coupled receptors (GPCRs), to regulate this homeostatic mechanism has received much less attention. Mechanisms that underlie the regulation of cell volume are of particular importance to cells in the central nervous system because of the physical restrictions of the skull and the adverse impact that even small increases in cell volume can have on their function. Increases in brain volume are seen in hyponatraemia, which can arise from a variety of aetiologies and is the most frequently diagnosed electrolyte disorder in clinical practice. In this review we summarize recent evidence that the activation of GPCRs facilitates the volume-dependent efflux of osmolytes from neural cells and permits them to more efficiently respond to small, physiologically relevant, reductions in osmolarity. The characteristics of receptor-regulated osmolyte efflux, the signalling pathways involved and the physiological significance of receptor activation are discussed. In addition, we propose that GPCRs may also regulate the re-uptake of osmolytes into neural cells, but that the influx of organic and inorganic osmolytes is differentially regulated. The ability of neural cells to closely regulate osmolyte homeostasis through receptor-mediated alterations in both efflux and influx mechanisms may explain, in part at least, why the brain selectively retains its complement of inorganic osmolytes during chronic hyponatraemia, whereas its organic osmolytes are depleted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79149/1/jphysiol.2010.190777.pd

    Comparative study of MRI biomarkers in the substantia nigra to discriminate idiopathic Parkinson disease

    Get PDF
    BACKGROUND AND PURPOSE: Several new MR imaging techniques have shown promising results in patients with Parkinson disease; however, the comparative diagnostic values of these measures at the individual level remain unclear. Our aim was to compare the diagnostic value of MR imaging biomarkers of substantia nigra damage for distinguishing patients with Parkinson disease from healthy volunteers. MATERIALS AND METHODS: Thirty-six patients and 20 healthy volunteers were prospectively included. The MR imaging protocol at 3T included 3D T2-weighted and T1-weighted neuromelanin-sensitive images, diffusion tensor images, and R2* mapping. T2* high-resolution images were also acquired at 7T to evaluate the dorsal nigral hyperintensity sign. Quantitative analysis was performed using ROIs in the substantia nigra drawn manually around the area of high signal intensity on neuromelanin-sensitive images and T2-weighted images. Visual analysis of the substantia nigra neuromelanin-sensitive signal intensity and the dorsolateral nigral hyperintensity on T2* images was performed. RESULTS: There was a significant decrease in the neuromelanin-sensitive volume and signal intensity in patients with Parkinson disease. There was also a significant decrease in fractional anisotropy and an increase in mean, axial, and radial diffusivity in the neuromelanin-sensitive substantia nigra at 3T and a decrease in substantia nigra volume on T2* images. The combination of substantia nigra volume, signal intensity, and fractional anisotropy in the neuromelanin-sensitive substantia nigra allowed excellent diagnostic accuracy (0.93). Visual assessment of both substantia nigra dorsolateral hyperintensity and neuromelanin-sensitive images had good diagnostic accuracy (0.91 and 0.86, respectively). CONCLUSIONS: The combination of neuromelanin signal and volume changes with fractional anisotropy measurements in the substantia nigra showed excellent diagnostic accuracy. Moreover, the high diagnostic accuracy of visual assessment of substantia nigra changes using dorsolateral hyperintensity analysis or neuromelanin-sensitive signal changes indicates that these techniques are promising for clinical practice

    Conditional deletion of LRRC8A in the brain reduces stroke damage independently of swelling-activated glutamate release

    Get PDF
    The ubiquitous volume-regulated anion channels (VRACs) facilitate cell volume control and contribute to many other physiological processes. Treatment with non-specific VRAC blockers or brain-specific deletion of the essential VRAC subunit LRRC8A is highly protective in rodent models of stroke. Here, we tested the widely accepted idea that the harmful effects of VRACs are mediated by release of the excitatory neurotransmitter glutamate. We produced conditional LRRC8A knockout either exclusively in astrocytes or in the majority of brain cells. Genetically modified mice were subjected to an experimental stroke (middle cerebral artery occlusion). The astrocytic LRRC8A knockout yielded no protection. Conversely, the brain-wide LRRC8A deletion strongly reduced cerebral infarction in both heterozygous (Het) and full KO mice. Yet, despite identical protection, Het mice had full swelling-activated glutamate release, whereas KO animals showed its virtual absence. These findings suggest that LRRC8A contributes to ischemic brain injury via a mechanism other than VRAC-mediated glutamate release
    • …
    corecore