934 research outputs found
Caractéristiques des médecins prescrivant des psychotropes davantage aux femmes qu’aux hommes
Les différences observées dans l'état de santé et l'utilisation des services médicaux, selon le sexe, se sont avérées insuffisantes pour expliquer une plus grande consommation de psychotropes chez les femmes que chez les hommes dans les pays industrialisés. Nous avons testé l'hypothèse selon laquelle les habitudes de prescription des médecins expliquent une partie importante de cette observation. Nous démontrons, à l'aide des données de la Régie de l'assurance-maladie du Québec pour les personnes âgées de 65 ans et plus, que le profil socio-démographique et le style de gestion des médecins prescripteurs sont associés de façon significative au pourcentage d'hommes et de femmes ayant obtenu une ordonnance de psychotrope dans leurs pratiques.In industrialized countries, gender differences observed in health condition and the use of medical services appear insufficient to explain a greater consumption of psychotropic drugs in women than men. The authors have tested the hypothesis that physician prescribing patterns largely explains this observation. They demonstrate, using data from the Régie de l'assurance maladie du Québec for people aged 65 and over, that physicians' sociodemographic and practice characteristics are significantly associated with the percentage of men and women who receive a psychotropic drug prescription in their practice
Recommended from our members
Interferon regulatory factor 2 protects mice from lethal viral neuroinvasion.
The host responds to virus infection by activating type I interferon (IFN) signaling leading to expression of IFN-stimulated genes (ISGs). Dysregulation of the IFN response results in inflammatory diseases and chronic infections. In this study, we demonstrate that IFN regulatory factor 2 (IRF2), an ISG and a negative regulator of IFN signaling, influences alphavirus neuroinvasion and pathogenesis. A Sindbis virus strain that in wild-type (WT) mice only causes disease when injected into the brain leads to lethal encephalitis in Irf2-/- mice after peripheral inoculation. Irf2-/- mice fail to control virus replication and recruit immune infiltrates into the brain. Reduced B cells and virus-specific IgG are observed in the Irf2-/- mouse brains despite the presence of peripheral neutralizing antibodies, suggesting a defect in B cell trafficking to the central nervous system (CNS). B cell-deficient μMT mice are significantly more susceptible to viral infection, yet WT B cells and serum are unable to rescue the Irf2-/- mice. Collectively, our data demonstrate that proper localization of B cells and local production of antibodies in the CNS are required for protection. The work advances our understanding of host mechanisms that affect viral neuroinvasion and their contribution to immunity against CNS infections
Clusters and Fluctuations at Mean-Field Critical Points and Spinodals
We show that the structure of the fluctuations close to spinodals and
mean-field critical points is qualitatively different than the structure close
to non-mean-field critical points. This difference has important implications
for many areas including the formation of glasses in supercooled liquids. In
particular, the divergence of the measured static structure function in
near-mean-field systems close to the glass transition is suppressed relative to
the mean-field prediction in systems for which a spatial symmetry is broken.Comment: 5 pages, 1 figur
Zeros of the Partition Function and Pseudospinodals in Long-Range Ising Models
The relation between the zeros of the partition function and spinodal
critical points in Ising models with long-range interactions is investigated.
We find the spinodal is associated with the zeros of the partition function in
four-dimensional complex temperature/magnetic field space. The zeros approach
the real temperature/magnetic field plane as the range of interaction
increases.Comment: 20 pages, 9 figures, accepted to PR
Critical behavior of a fluid in a disordered porous matrix: An Ornstein-Zernike approach
Using a liquid-state approach based on Ornstein-Zernike equations, we study
the behavior of a fluid inside a porous disordered matrix near the liquid-gas
critical point.The results obtained within various standard approximation
schemes such as lowest-order -ordering and the mean-spherical
approximation suggest that the critical behavior is closely related to that of
the random-field Ising model (RFIM).Comment: 10 pages, revtex, to appear in Physical Review Letter
Nucleation in Systems with Elastic Forces
Systems with long-range interactions when quenced into a metastable state
near the pseudo-spinodal exhibit nucleation processes that are quite different
from the classical nucleation seen near the coexistence curve. In systems with
long-range elastic forces the description of the nucleation process can be
quite subtle due to the presence of bulk/interface elastic compatibility
constraints. We analyze the nucleation process in a simple 2d model with
elastic forces and show that the nucleation process generates critical droplets
with a different structure than the stable phase. This has implications for
nucleation in many crystal-crystal transitions and the structure of the final
state
Avalanches in Breakdown and Fracture Processes
We investigate the breakdown of disordered networks under the action of an
increasing external---mechanical or electrical---force. We perform a mean-field
analysis and estimate scaling exponents for the approach to the instability. By
simulating two-dimensional models of electric breakdown and fracture we observe
that the breakdown is preceded by avalanche events. The avalanches can be
described by scaling laws, and the estimated values of the exponents are
consistent with those found in mean-field theory. The breakdown point is
characterized by a discontinuity in the macroscopic properties of the material,
such as conductivity or elasticity, indicative of a first order transition. The
scaling laws suggest an analogy with the behavior expected in spinodal
nucleation.Comment: 15 pages, 12 figures, submitted to Phys. Rev. E, corrected typo in
authors name, no changes to the pape
Failure of planar fiber networks
We study the failure of planar random fiber networks with computer simulations. The networks are grown by adding flexible fibers one by one on a growing deposit [K. J. Niskanen and M. J. Alava, Phys. Rev. Lett. 73, 3475 (1994)], a process yielding realistic three dimensional network structures. The network thus obtained is mapped to an electrical analogue of the elastic problem, namely to a random fuse network with separate bond elements for the fiber-to-fiber contacts. The conductivity of the contacts (corresponding to the efficiency of stress transfer between fibers) is adjustable. We construct a simple effective medium theory for the current distribution and conductivity of the networks as a function of intra-fiber current transfer efficiency. This analysis compares favorably with the computed conductivity and with the fracture properties of fiber networks with varying fiber flexibility and network thickness. The failure characteristics are shown to obey scaling behavior, as expected of a disordered brittlematerial, which is explained by the high current end of the current distribution saturating in thick enough networks. For bond breaking, fracture load and strain can be estimated with the effective medium theory. For fiber breaking, we find the counter-intuitive result that failure is more likely to nucleate far from surfaces, as the stress is transmitted more effectively to the fibers in the interior.Peer reviewe
Weather Avoidance Guidelines for NASA Global Hawk High-Altitude Unmanned Aircraft Systems (UAS)
The current Global Hawk flight rules would probably not have been effective in the single event of greatest concern (the Emily encounter). The cloud top had not reached 50,000 ft until minutes before the encounter. The TOT and lightning data would not have been available until near the overflight time since this was a rapidly growing cell. This case would have required a lastminute diversion when lightning became frequent. Avoiding such a cell probably requires continual monitoring of the forward camera and storm scope, whether or not cloud tops have been exceeding specific limits. However, the current overflight rules as strictly interpreted would have prohibited significant fractions of the successful Global Hawk overpasses of Karl and Matthew that proved not to be hazardous. Many other high altitude aircraft (ER2 and Global Hawk) flights in NASA tropical cyclone field programs have successfully overflown deep convective clouds without incident.The convective cell that caused serious concern about the safety of the ER2 in Emily was especially strong for a tropical cyclone environment, probably as strong or stronger than any that was overflown by the ER2 in 20 previous flights over tropical cyclones. Specifically, what made that cell a safety concern was the magnitude of the vertical velocity of the updraft, at least 20 m/s (4000 ft/minute) at the time the ER2 overflew it. Such a strong updraft can generate strong gravity waves at and above the tropopause, posing a potential danger to aircraft far above the maximum altitude of the updraft itself or its associated cloud top. Indeed, the ER2 was probably at least 9000 ft above that cloud top. Cloudtop height, by itself, is not an especially good indicator of the intensity of convection and the likelihood of turbulence. Nor is overflying high cloud tops (i.e. > 50,000 ft) of particular concern unless there is other evidence of very strong convective updrafts beneath those tops in the path of the aircraft. center dot Lightning, especially lightning with a high flash rate, is well correlated with convective intensity. Lightning with a minimal flash rate (say 13 flashes per minute) is indicative of updraft speeds of about 10 m/s in the mixed phase region where charge is being separated, generally at altitudes about 2025 kft in a hurricane. That is still stronger than typical updrafts (more like 5 m/s). An unresolved issue is whether there is a high and instantaneous correlation between vertical velocity in the middle troposphere (necessary for lightning generation) and near cloud top (more direct concern for overflights)
- …
