206 research outputs found
Adsorption and release of sulfamethizole from mesoporous silica nanoparticles functionalised with triethylenetetramine
Mesoporous silica nanoparticles (MSN) were synthesised and functionalised with tri-ethylenetetramine (MSN-TETA). The samples were fully characterised (transmission electron mi-croscopy, small angle X-ray scattering, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential and nitrogen adsorption/desorption isotherms) and used as carriers for the adsorption of the antimicrobial drug sulphamethizole (SMZ). SMZ loading, quantified by UVâVis spectroscopy, was higher on MSN-TETA (345.8 mg gâ1) compared with bare MSN (215.4 mg gâ1) even in the presence of a lower surface area (671 vs. 942 m2 gâ1). The kinetics of SMZ adsorption on MSN and MSN-TETA followed a pseudo-second-order model. The adsorption isotherm is described better by a Langmuir model rather than a Temkin or Freundlich model. Release kinetics showed a burst release of SMZ from bare MSN samples (k1 = 136 hâ1) in contrast to a slower release found with MSN-TETA (k1 = 3.04 hâ1), suggesting attractive intermolecular interactions slow down SMZ release from MSN-TETA. In summary, the MSN surface area did not influence SMZ adsorption and release. On the contrary, the design of an effective drug delivery system must consider the intermolecular interactions between the adsorbent and the adsorbate
ÎČ-N-acetylglucosaminidase grafted on mesoporous silica nanoparticles. A bionanoantibiotic system against Staphylococcus aureus bacteria
A bionanoantibiotic system based on beta-N-acetylglucosaminidase (Ami) and Lysozyme (Lyz) enzymes grafted on the external surface of amino functionalized mesoporous silica nanoparticles, having a radial arrangement of pores (MSNr-NH2), was prepared and fully characterized. Before the enzyme grafting the nanoparticles were also loaded with the antibiotic drug levofloxacin (Levo) to explore the possible synergic effect with the enzymes. MSNr-NH2-Lyz-Levo and MSNr-NH2-Ami-Levo did not show any activity against S. aureus. On the contrary, in the absence of the antibiotic, both Lyz and Ami immobilized on MSNr were able to destroy S. aureus cells, suggesting an inhibiting action of the antibiotic on the enzymes. Although the loading of immobilized Lyz was higher than that of Ami (76 vs. 20 mg/g, respectively), the highest antibacterial efficacy was found for MSNr-NH2-Ami nanoantibiotic. Moreover, MSNr-NH2-Ami was active against S. aureus even at very low concentration (12.5 mu g/ mL) with a bactericidal activity (79%), higher than that determined for MSNr-NH2 loaded with levofloxacin (54%). These results suggest the possibility of using enzyme grafted MSNr as a bionanoantibiotic drug with high efficiency even at low nanoparticles concentration
Determining adsorbate configuration on alumina surfaces with 13C nuclear magnetic resonance relaxation time analysis
Relative strengths of surface interaction for individual carbon atoms in acyclic and cyclic hydrocarbons adsorbed on alumina surfaces are determined using chemically resolved 13C nuclear magnetic resonance (NMR) T1 relaxation times. The ratio of relaxation times for the adsorbed atoms T1,ads to the bulk liquid relaxation time T1,bulk provides an indication of the mobility of the atom. Hence a low T1,ads/T1,bulk ratio indicates a stronger surface interaction. The carbon atoms associated with unsaturated bonds in the molecules are seen to exhibit a larger reduction in T1 on adsorption relative to the aliphatic carbons, consistent with adsorption occurring through the carbon-carbon multiple bonds. The relaxation data are interpreted in terms of proximity of individual carbon atoms to the alumina surface and adsorption conformations are inferred. Furthermore, variations of interaction strength and molecular configuration have been explored as a function of adsorbate coverage, temperature, surface pre-treatment, and in the presence of co-adsorbates. This relaxation time analysis is appropriate for studying the behaviour of hydrocarbons adsorbed on a wide range of catalyst support and supported-metal catalyst surfaces, and offers the potential to explore such systems under realistic operating conditions when multiple chemical components are present at the surface
Not only pH. Specific buffer effects in biological systems
The aim of this work is to overview the specific effect of pH buffers in biological systems. The pH of a buffer solution changes only slightly when a small amount of a strong acid or bases is added to it. This is widely accepted and applied both in chemical and in biological (i.e. enzyme catalysis) systems. Here we show some examples - spanning from pH measurements, enzyme activities, electrophoretic mobilities, antibody aggregation, protein thermal stability - that demonstrate additional roles of buffers. They not only set pH, but also address specific ion effects, in terms of Hofmeister series, when strong electrolytes are also added. From the experimental data referred to some charged biological moieties it emerges that different buffers, at the same nominal pH, can specifically adsorb at the charged surface. Buffer specific adsorption modifies several molecular and macroscopic properties amongst which electrophoretic mobilities, and hence effective surface charges, are particularly significant. More importantly, buffers' weak electrolytes, even at low concentration, are found to compete for the adsorption at the charged surfaces with strong electrolytes, thus modulating Hofmeister effect
- âŠ