2,879 research outputs found

    SPH Simulations of Counterrotating Disk Formation in Spiral Galaxies

    Get PDF
    We present the results of Smoothed Particle Hydrodynamics (SPH) simulations of the formation of a massive counterrotating disk in a spiral galaxy. The current study revisits and extends (with SPH) previous work carried out with sticky particle gas dynamics, in which adiabatic gas infall and a retrograde gas-rich dwarf merger were tested as the two most likely processes for producing such a counterrotating disk. We report on experiments with a cold primary similar to our Galaxy, as well as a hot, compact primary modeled after NGC 4138. We have also conducted numerical experiments with varying amounts of prograde gas in the primary disk, and an alternative infall model (a spherical shell with retrograde angular momentum). The structure of the resulting counterrotating disks is dramatically different with SPH. The disks we produce are considerably thinner than the primary disks and those produced with sticky particles. The time-scales for counterrotating disk formation are shorter with SPH because the gas loses kinetic energy and angular momentum more rapidly. Spiral structure is evident in most of the disks, but an exponential radial profile is not a natural byproduct of these processes. The infalling gas shells that we tested produce counterrotating bulges and rings rather than disks. The presence of a considerable amount of preexisting prograde gas in the primary causes, at least in the absence of star formation, a rapid inflow of gas to the center and a subsequent hole in the counterrotating disk. In general, our SPH experiments yield stronger evidence to suggest that the accretion of massive counterrotating disks drives the evolution of the host galaxies towards earlier (S0/Sa) Hubble types.Comment: To appear in ApJ. 20 pages LaTex 2-column with 3 tables, 23 figures (GIF) available at this site. Complete gzipped postscript preprint with embedded figures available from http://tarkus.pha.jhu.edu/~thakar/cr3.html (3 Mb

    Maximum gravitational-wave energy emissible in magnetar flares

    Get PDF
    Recent searches of gravitational-wave (GW) data raise the question of what maximum GW energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (\sim 10^{49} erg) predicted so far come from a model [K. Ioka, Mon. Not. Roy. Astron. Soc. 327, 639 (2001)] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10^{48}-10^{49} erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.Comment: 16 pages, 5 figures, 1 tabl

    The human ovarian surface epithelium is an androgen responsive tissue

    Get PDF
    The pathogenesis of epithelial ovarian cancer remains unclear. From epidemiological studies raised levels of androgens have been implicated to increase the risk of developing the disease. The purpose of this study was to determine the responses of normal human ovarian surface epithelium to androgens. We have established primary cultures of human ovarian surface epithelium from patients undergoing oophorectomy for benign disease. Total RNA was isolated from these cultures and expression of mRNA encoding for the androgen receptor was demonstrated using reverse transcriptase polymerase chain reaction. The presence of androgen receptor in sections of normal ovary was also investigated using an antibody against androgen receptor. The effects of androgens on DNA synthesis and cell death were determined. Eight out of eight (100%) cultures expressed mRNA encoding the androgen receptor. The presence of androgen receptor in ovarian surface epithelium of sections of normal ovaries was demonstrated in all sections. Mibolerone, a synthetic androgen, caused a significant stimulation of DNA synthesis in 5 out of 9 (55%) cultures when used at a concentration of 1 nM. Mibolerone also caused a significant decrease in cell death in 2 out of 5 (40%) cultures tested. We have demonstrated that the ovarian surface epithelium is an androgen responsive tissue and that androgens can cause an increase in proliferation and a decrease in cell death. These findings have important implications for the pathophysiology of ovarian carcinogenesis

    SPH simulations of accretion disks and narrow rings

    Get PDF
    We model a massless viscous disk using Smoothed Particle Hydrodynamics (SPH) and note that it evolves according to the Lynden-Bell \& Pringle theory (1974) until a non-axisymmetric instability develops at the inner edge of the disk. This instability may have the same origin as the instability of initially axisymmetric viscous disks discussed by Lyubarskij et al. (1994). To clarify the evolution we evolved single and double rings of particles. It is actually inconsistent with the SPH scheme to set up a single ring as an initial condition because SPH assumes a smoothed initial state. As would be expected from an SPH simulation, the ring rapidly breaks up into a band. We analyse the stability of the ring and show that the predictions are confirmed by the simulation

    Tidal spin-up of stars in dense stellar cusps around massive black holes

    Get PDF
    We show that main-sequence stars in dense stellar cusps around massive black holes are likely to rotate at a significant fraction of the centrifugal breakup velocity due to spin-up by hyperbolic tidal encounters. We use realistic stellar structure models to calculate analytically the tidal spin-up in soft encounters, and extrapolate these results to close and penetrating collisions using smoothed particle hydrodynamics simulations. We find that the spin-up falls off only slowly with distance from the black hole because the increased tidal coupling in slower collisions at larger distances compensates for the decrease in the stellar density. We apply our results to the stars near the massive black hole in the Galactic Center. Over their lifetime, ~1 Msol main sequence stars in the inner 0.3 pc of the Galactic Center are spun-up on average to ~10%--30% of the centrifugal breakup limit. Such rotation is ~20--60 times higher than is usual for such stars and may affect their subsequent evolution and their observed properties.Comment: 25 pages, 7 figures. Submitted to Ap

    Collisions of inhomogeneous pre-planetesimals

    Full text link
    In the framework of the coagulation scenario, kilometre-sized planetesimals form by subsequent collisions of pre-planetesimals of sizes from centimetre to hundreds of metres. Pre-planetesimals are fluffy, porous dust aggregates, which are inhomogeneous owing to their collisional history. Planetesimal growth can be prevented by catastrophic disruption in pre-planetesimal collisions above the destruction velocity threshold. We develop an inhomogeneity model based on the density distribution of dust aggregates, which is assumed to be a Gaussian distribution with a well-defined standard deviation. As a second input parameter, we consider the typical size of an inhomogeneous clump. These input parameters are easily accessible by laboratory experiments. For the simulation of the dust aggregates, we utilise a smoothed particle hydrodynamics (SPH) code with extensions for modelling porous solid bodies. The porosity model was previously calibrated for the simulation of silica dust, which commonly serves as an analogue for pre-planetesimal material. The inhomogeneity is imposed as an initial condition on the SPH particle distribution. We carry out collisions of centimetre-sized dust aggregates of intermediate porosity. We vary the standard deviation of the inhomogeneous distribution at fixed typical clump size. The collision outcome is categorised according to the four-population model. We show that inhomogeneous pre-planetesimals are more prone to destruction than homogeneous aggregates. Even slight inhomogeneities can lower the threshold for catastrophic disruption. For a fixed collision velocity, the sizes of the fragments decrease with increasing inhomogeneity. Pre-planetesimals with an active collisional history tend to be weaker. This is a possible obstacle to collisional growth and needs to be taken into account in future studies of the coagulation scenario.Comment: 12 pages, 9 figures, 4 table

    Numerical Simulations of Highly Porous Dust Aggregates in the Low-Velocity Collision Regime

    Full text link
    A highly favoured mechanism of planetesimal formation is collisional growth. Single dust grains, which follow gas flows in the protoplanetary disc, hit each other, stick due to van der Waals forces and form fluffy aggregates up to centimetre size. The mechanism of further growth is unclear since the outcome of aggregate collisions in the relevant velocity and size regime cannot be investigated in the laboratory under protoplanetary disc conditions. Realistic statistics of the result of dust aggregate collisions beyond decimetre size is missing for a deeper understanding of planetary growth. Joining experimental and numerical efforts we want to calibrate and validate a computer program that is capable of a correct simulation of the macroscopic behaviour of highly porous dust aggregates. After testing its numerical limitations thoroughly we will check the program especially for a realistic reproduction of various benchmark experiments. We adopt the smooth particle hydrodynamics (SPH) numerical scheme with extensions for the simulation of solid bodies and a modified version of the Sirono porosity model. Experimentally measured macroscopic material properties of silica dust are implemented. We calibrate and test for the compressive strength relation and the bulk modulus. SPH has already proven to be a suitable tool to simulate collisions at rather high velocities. In this work we demonstrate that its area of application can not only be extended to low-velocity experiments and collisions. It can also be used to simulate the behaviour of highly porous objects in this velocity regime to a very high accuracy.The result of the calibration process in this work is an SPH code that can be utilised to investigate the collisional outcome of porous dust in the low-velocity regime.Comment: accepted by Astronomy & Astrophysic

    Composition Mixing during Blue Straggler Formation and Evolution

    Get PDF
    We use smoothed-particle hydrodynamics to examine differences between direct collisions of single stars and binary star mergers in their roles as possible blue straggler star formation mechanisms. We find in all cases that core helium in the progenitor stars is largely retained in the core of the remnant, almost independent of the type of interaction or the central concentration of the progenitor stars. We have also modelled the subsequent evolution of the hydrostatic remnants, including mass loss and energy input from the hydrodynamical interaction. The combination of the hydrodynamical and hydrostatic models enables us to predict that little mixing will occur during the merger of two globular cluster stars of equal mass. In contrast to the results of Proctor Sills, Bailyn, & Demarque (1995), we find that neither completely mixed nor unmixed models can match the absolute colors of observed blue stragglers in NGC 6397 at all luminosity levels. We also find that the color distribution is probably the crucial test for explanations of BSS formation - if stellar collisions or mergers are the correct mechanisms, a large fraction of the lifetime of the straggler must be spent away from the main sequence. This constraint appears to rule out the possibility of completely mixed models. For NGC 6397, unmixed models predict blue straggler lifetimes ranging from about 0.1 to 4 Gyr, while completely mixed models predict a range from about 0.6 to 4 Gyr.Comment: AASTeX, 28 pg., accepted for ApJ, also available at http://ucowww.ucsc.edu/~erics/bspaper.htm

    Enabling internal electronic circuitry within additively manufactured metal structures - The effect and importance of inter-laminar topography

    Get PDF
    Purpose: This paper aims to explore the potential of ultrasonic additive manufacturing (UAM) to incorporate the direct printing of electrical materials and arrangements (conductors and insulators) at the interlaminar interface of parts during manufacture to allow the integration of functional and optimal electrical circuitries inside dense metallic objects without detrimental effect on the overall mechanical integrity. This holds promise to release transformative device functionality and applications of smart metallic devices and products. Design/methodology/approach: To ensure the proper electrical insulation between the printed conductors and metal matrices, an insulation layer with sufficient thickness is required to accommodate the rough interlaminar surface which is inherent to the UAM process. This in turn increases the total thickness of printed circuitries and thereby adversely affects the integrity of the UAM part. A specific solution is proposed to optimise the rough interlaminar surface through deforming the UAM substrates via sonotrode rolling or UAM processing. Findings: The surface roughness (Sa) could be reduced from 4.5 to 4.1 µm by sonotrode rolling and from 4.5 to 0.8 µm by ultrasonic deformation. Peel testing demonstrated that sonotrode-rolled substrates could maintain their mechanical strength, while the performance of UAM-deformed substrates degraded under same welding conditions ( approximately 12 per cent reduction compared with undeformed substrates). This was attributed to the work hardening of deformation process which was identified via dual-beam focussed ion beam–scanning electron microscope investigation. Originality/value: The sonotrode rolling was identified as a viable methodology in allowing printed electrical circuitries in UAM. It enabled a decrease in the thickness of printed electrical circuitries by ca. 25 per cent
    • …
    corecore