879 research outputs found

    Protecting a transgene expression from the HAC-based vector by different chromatin insulators

    Get PDF
    Human artificial chromosomes (HACs) are vectors that offer advantages of capacity and stability for gene delivery and expression. Several studies have even demonstrated their use for gene complementation in gene-deficient recipient cell lines and animal transgenesis. Recently, we constructed an advance HAC-based vector, alphoid(tetO)-HAC, with a conditional centromere. In this HAC, a gene-loading site was inserted into a centrochromatin domain critical for kinetochore assembly and maintenance. While by definition this domain is permissive for transcription, there have been no long-term studies on transgene expression within centrochromatin. In this study, we compared the effects of three chromatin insulators, cHS4, gamma-satellite DNA, and tDNA, on the expression of an EGFP transgene inserted into the alphoid(tetO)-HAC vector. Insulator function was essential for stable expression of the transgene in centrochromatin. In two analyzed host cell lines, a tDNA insulator composed of two functional copies of tRNA genes showed the highest barrier activity. We infer that proximity to centrochromatin does not protect genes lacking chromatin insulators from epigenetic silencing. Barrier elements that prevent gene silencing in centrochromatin would thus help to optimize transgenesis using HAC vectors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00018-013-1362-9) contains supplementary material, which is available to authorized users

    Surface electromyography pattern of human swallowing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The physiology of swallowing is characterized by a complex and coordinated activation of many stomatognathic, pharyngeal, and laryngeal muscles. Kinetics and electromyographic studies have widely investigated the pharyngeal and laryngeal pattern of deglutition in order to point out the differences between normal and dysphagic people. In the dental field, muscular activation during swallowing is believed to be the cause of malocclusion.</p> <p>Despite the clinical importance given to spontaneous swallowing, few physiologic works have studied stomatognathic muscular activation and mandibular movement during spontaneous saliva swallowing.</p> <p>The aim of our study was to investigate the activity patterns of the mandibular elevator muscles (masseter and anterior temporalis muscles), the submental muscles, and the neck muscles (sternocleidomastoid muscles) in healthy people during spontaneous swallowing of saliva and to relate the muscular activities to mandibular movement.</p> <p>Methods</p> <p>The spontaneous swallowing of saliva of 111 healthy individuals was analyzed using surface electromyography (SEMG) and a computerized kinesiography of mandibular movement.</p> <p>Results</p> <p>Fifty-seven of 111 patients swallowed without occlusal contact (SNOC) and 54 individuals had occlusal contact (SOC). The sternocleidomastoid muscles showed a slight, but constant activation during swallowing. The SEMG of the submental and sternocleidomastoid muscles showed no differences between the two groups. The SEMG of the anterior temporalis and masseter muscles showed significant differences (p < 0.0001). The duration of swallowing was significantly higher in the SNOC subjects. Gender and age were not related to electromyographic activation. Healthy SOC and SNOC behaved in different ways.</p> <p>Conclusion</p> <p>The data suggest that there is not a single "normal" or "typical" pattern for spontaneous saliva swallowing. The polygraph seemed a valuable, simple, non-invasive and reliable tool to study the physiology of swallowing.</p

    Anterior cruciate ligament reconstruction is associated with greater tibial tunnel widening when using a bioabsorbable screw compared to an all-inside technique with suspensory fixation

    Get PDF
    Purpose: To compare clinical outcomes and tunnel widening following anterior cruciate ligament reconstruction (ACLR) performed with an all-inside technique (Group A) or with a bioabsorbable tibial screw and suspensory femoral fixation (Group B). Methods: Tunnel widening was assessed using computed tomography (CT) and a previously validated analytical best fit cylinder technique at approximately 1-year following ACLR. Clinical follow-up comprised evaluation with IKDC, KSS, Tegner, Lysholm scores, and knee laxity assessment. Results: The study population comprised 22 patients in each group with a median clinical follow-up of 24 months (range 21–27 months). The median duration between ACLR and CT was 13 months (range 12–14 months). There were no significant differences in clinical outcome measures between groups. There were no differences between groups with respect to femoral tunnel widening. However, there was a significantly larger increase in tibial tunnel widening, at the middle portion, in Group B (2.4 ± 1.5 mm) compared to Group A (0.8 ± 0.4 mm) (p = 0.027), and also at the articular portion in Group B (1.5 ± 0.8 mm) compared to Group A (0.8 ± 0.8 mm) (p = 0.027). Conclusion: Tibial tunnel widening after ACLR using hamstring tendon autograft is significantly greater with suspensory femoral fixation and a bioabsorbable tibial interference screw when compared to an all-inside technique at a median follow-up of 2 years. The clinical relevance of this work lies in the rebuttal of concerns arising from biomechanical studies regarding the possibility of increased tunnel widening with an all-inside technique. Level of evidence: III

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Beauty photoproduction measured using decays into muons in dijet events in ep collisions at s\sqrt{s}=318 GeV

    Get PDF
    The photoproduction of beauty quarks in events with two jets and a muon has been measured with the ZEUS detector at HERA using an integrated luminosity of 110 pb1^{- 1}. The fraction of jets containing b quarks was extracted from the transverse momentum distribution of the muon relative to the closest jet. Differential cross sections for beauty production as a function of the transverse momentum and pseudorapidity of the muon, of the associated jet and of xγjetsx_{\gamma}^{jets}, the fraction of the photon's momentum participating in the hard process, are compared with MC models and QCD predictions made at next-to-leading order. The latter give a good description of the data.Comment: 32 pages, 6 tables, 7 figures Table 6 and Figure 7 revised September 200

    Prediction of grip and key pinch strength in 978 healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hand strength is an important independent surrogate parameter to assess outcome and risk of morbidity and mortality. This study aimed to determine the predictive power of cofactors and to predict population-based normative grip and pinch strength.</p> <p>Methods</p> <p>A representative population survey was used as the basis for prediction analyses (n = 978). Bivariate relationships between grip/pinch strengths of the dominate hand were explored by means of all relevant mathematical functions to maximize prediction. The resulting best functions were combined into a multivariate regression.</p> <p>Results</p> <p>Polynoms (up to the third degree) were the best predictive functions. On the bivariate level, height was best correlated to grip (46.2% explained variance) and pinch strength (37.7% explained variance) in a linear relationship, followed by sex, age, weight, and occupational demand on the hand. Multivariate regression provided predicted values close to the empirical ones explaining 76.6% of the variance for grip strength and 67.7% for pinch strength.</p> <p>Conclusion</p> <p>The five easy-to-measure cofactors sex, age, body height, categorized occupational demand on the hand, and body weight provide a highly accurate prediction of normative grip and pinch strength.</p

    The dependence of dijet production on photon virtuality in ep collisions at HERA

    Get PDF
    The dependence of dijet production on the virtuality of the exchanged photon, Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 < 2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb^-1. Dijet cross sections were measured for jets with transverse energy E_T^jet > 7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon momentum entering the hard process, was used to enhance the sensitivity of the measurement to the photon structure. The Q^2 dependence of the ratio of low- to high-xg^obs events was measured. Next-to-leading-order QCD predictions were found to generally underestimate the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models based on leading-logarithmic parton-showers, using a partonic structure for the photon which falls smoothly with increasing Q^2, provide a qualitative description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.

    Search for a narrow charmed baryonic state decaying to D^*+/- p^-/+ in ep collisions at HERA

    Get PDF
    A resonance search has been made in the D^*+/- p^-/+ invariant-mass spectrum with the ZEUS detector at HERA using an integrated luminosity of 126 pb^-1. The decay channels D^*+ -> D^0 pi^+_s -> (K^- pi^+) pi^+_s and D^*+ -> D^0 pi^+_s -> (K^- pi^+ pi^+ pi^-) pi^+_s (and the corresponding antiparticle decays) were used to identify D^*+/- mesons. No resonance structure was observed in the D^*+/- p^-/+ mass spectrum from more than 60000 reconstructed D^*+/- mesons. The results are not compatible with a report of the H1 Collaboration of a charmed pentaquark, Theta^0_c.Comment: 22 pages, 7 figures, 1 table; minor text revisions; 2 references adde

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
    corecore