855 research outputs found

    Accumulation of essential oils in relation to root differentiation in Angelica archangelica L.

    Get PDF
    The accumulation of essential oils in Angelica archangelica subsp. archangelica roots at different developmental stages was investigated through histochemical and chemical analyses. Roots less than 1 mm in diameter showed a primary diarch structure and two primary secretory ducts in the pericycle. These ducts were ephemeral and probably became dysfunctional early on. Oil accumulation was observed only in the secondary secretory ducts formed by cambium activity and located in the secondary phloem. Gas chromatographic analyses revealed that only taproots exceeding 5 mm in diameter contained a high concentration of a- and b- phellandrene, which appreciably influence the oil's aroma

    Cellular localisation of the anti-cancer drug camptothecin in Camptotheca acuminata Decne (Nyssaceae)

    Get PDF
    In Camptotheca acuminata, we studied the cellular sites of accumulation of the alkaloid camptothecin (CPT), in both plants grown in the field and those grown in a greenhouse, subjecting the latter to stress (i.e., draught, nutritional deficit, and pruning). Fresh sections of the leaf, stem, and root were analysed for the presence of CPT by examining the autofluorescence that the CPT molecule emits when exposed to UV radiation. In the plants grown in the field, CPT was observed only rarely. In the greenhouse plants, CPT had accumulated in crystalline form in the vacuole of specialised cells (i.e., segregator idioblasts), which were not morphologically distinguishable from the cells of the surrounding tissues. In the organs examined, the segregator idioblasts were localised in parenchymatic and epidermal tissues. CPT crystals were also detected in the glandular trichomes on both the stem and leaf

    The OPERA magnetic spectrometer

    Full text link
    The OPERA neutrino oscillation experiment foresees the construction of two magnetized iron spectrometers located after the lead-nuclear emulsion targets. The magnet is made up of two vertical walls of rectangular cross section connected by return yokes. The particle trajectories are measured by high precision drift tubes located before and after the arms of the magnet. Moreover, the magnet steel is instrumented with Resistive Plate Chambers that ease pattern recognition and allow a calorimetric measurement of the hadronic showers. In this paper we review the construction of the spectrometers. In particular, we describe the results obtained from the magnet and RPC prototypes and the installation of the final apparatus at the Gran Sasso laboratories. We discuss the mechanical and magnetic properties of the steel and the techniques employed to calibrate the field in the bulk of the magnet. Moreover, results of the tests and issues concerning the mass production of the Resistive Plate Chambers are reported. Finally, the expected physics performance of the detector is described; estimates rely on numerical simulations and the outcome of the tests described above.Comment: 6 pages, 10 figures, presented at the 2003 IEEE-NSS conference, Portland, OR, USA, October 20-24, 200

    Search for spontaneous muon emission from lead nuclei

    Full text link
    We describe a possible search for muonic radioactivity from lead nuclei using the base elements ("bricks" composed by lead and nuclear emulsion sheets) of the long-baseline OPERA neutrino experiment. We present the results of a Monte Carlo simulation concerning the expected event topologies and estimates of the background events. Using few bricks, we could reach a good sensitivity level.Comment: 12 pages, 4 figure

    POSEIDON: An integrated system for analysis and forecast of hydrological, meteorological and surface marine fields in the Mediterranean area

    Get PDF
    The Mediterranean area is characterized by relevant hydrological, meteorological and marine processes developing at horizontal space-scales of the order of 1–100 km. In the recent past, several international programs have been addressed (ALPEX, POEM, MAP, etc.)to “resolving” the dynamics of such motions. Other projects (INTERREG-Flooding, MEDEX, etc.)are at present being developed with special emphasis on catastrophic events with major impact on human society that are, quite often, characterized in their manifestation by processes with the above-mentioned scales of motion. In the dynamical evolution of such events, however, equally important is the dynamics of interaction of the local (and sometimes very damaging)pro cesses with others developing at larger scales of motion. In fact, some of the most catastrophic events in the history of Mediterranean countries are associated with dynamical processes covering all the range of space-time scales from planetary to local. The Prevision Operational System for the mEditerranean basIn and the Defence of the lagOon of veNice (POSEIDON)is an integrated system for the analysis and forecast of hydrological, meteorological, oceanic fields specifically designed and set up in order to bridge the gap between global and local scales of motion, by modeling explicitly the above referred to dynamical processes in the range of scales from Mediterranean to local. The core of POSEIDON consists of a “cascade” of numerical models that, starting from global scale numerical analysisforecast, goes all the way to very local phenomena, like tidal propagation in Venice Lagoon. The large computational load imposed by such operational design requires necessarily parallel computing technology: the first model in the cascade is a parallelised version of BOlogna Limited Area Model (BOLAM)running on a Quadrics 128 processors computer (also known as QBOLAM). POSEIDON, developed in the context of a co-operation between the Italian Agency for New technologies, Energy and Environment (Ente per le Nuove tecnologie, l’Energia e l’Ambiente, ENEA)and the Italian Agency for Environmental Protection and Technical Services (Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici, APAT), has become operational in 2000 and we are presently in the condition of drawing some preliminary conclusions about its performance. In the paper we describe the scientific concepts that were at the basis of the original planning, the structure of the system, its operational cycle and some preliminary scientific and technical evaluations after two years of experimentation

    Fabrication of periodic microstructures on flexible polyimide membranes

    Get PDF
    Periodic metallic microstructures were fabricated on polyimide membranes. Techniques were developed to maintain flatness of the membrane during processing while still allowing for flexibility in the final structure. For proper functionality of the structures, it was necessary to first fabricate a continuous metallic film and a continuous dielectric layer on top of the flexible substrate, which underlaid the periodic microstructure. Flexibility of the overall structure was maintained by using a polymer as the dielectric layer, which was constrained to have high optical transmission over the infrared wavelength range of 6-14 mu m. Three candidate polymers were evaluated, and their measured optical properties are presented. Benzocyclobutene was found to be the best choice for this application. The final structure fully populated a 10 cm (4 in.) diameter flexible membrane with microstructures of excellent uniformity. (C) 2007 American Vacuum Society

    Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network

    Get PDF
    We have studied the performance of a new algorithm for electron/pion separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The software for separation consists of two parts: a shower reconstruction algorithm and a Neural Network that assigns to each reconstructed shower the probability to be an electron or a pion. The performance has been studied for the ECC of the OPERA experiment [1]. The e/πe/\pi separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data taken at CERN (pion beams) and at DESY (electron beams). The algorithm allows to achieve a 90% electron identification efficiency with a pion misidentification smaller than 1% for energies higher than 2 GeV

    A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector

    Full text link
    We describe a search method for fast moving (ÎČ>5×10−3\beta > 5 \times 10^{-3}) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5×10−15cm−2s−1sr−11.5 \times 10^{-15} cm^{-2} s^{-1} sr^{-1} in the velocity range 5×10−3≀ÎČ≀0.995 \times 10^{-3} \le \beta \le 0.99 and for nucleon decay catalysis cross section smaller than ∌1mb\sim 1 mb.Comment: 29 pages (12 figures). Accepted by Astroparticle Physic
    • 

    corecore