11 research outputs found
Recommended from our members
Identification of MeCP2 mutations in a series of females with autistic disorder
Rett disorder and autistic disorder are both pervasive developmental disorders. Recent studies indicate that at least 80% of Rett Disorder cases are caused by mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. Since there is some phenotypic overlap between autistic disorder and Rett disorder, we analyzed 69 females clinically diagnosed with autistic disorder for the presence of mutations in the MeCP2 gene. Two autistic disorder females were found to have de novo mutations in the MeCP2 gene. These data provide additional evidence of variable expression in the Rett disorder phenotype and suggest MeCP2 testing may be warranted for females presenting with autistic disorder
Mice with Truncated MeCP2 Recapitulate Many Rett Syndrome Features and Display Hyperacetylation of Histone H3
Mutations in the methyl-CpG binding protein 2 (
MECP2) gene cause Rett syndrome (RTT), a neurodevelopmental disorder characterized by the loss of language and motor skills during early childhood. We generated mice with a truncating mutation similar to those found in RTT patients. These mice appeared normal and exhibited normal motor function for about 6 weeks, but then developed a progressive neurological disease that includes many features of RTT: tremors, motor impairments, hypoactivity, increased anxiety-related behavior, seizures, kyphosis, and stereotypic forelimb motions. Additionally, we show that although the truncated MeCP2 protein in these mice localizes normally to heterochromatic domains in vivo, histone H3 is hyperacetylated, providing evidence that the chromatin architecture is abnormal and that gene expression may be misregulated in this model of Rett syndrome
Do Pre-Analytical Parameters Explain KRAS Test Sensitivity Disparities?
Contains fulltext :
110952.pdf (publisher's version ) (Closed access
Implementation of formalin-fixed, paraffin-embedded cell line pellets as high-quality process controls in quality assessment programs for KRAS mutation analysis.
Contains fulltext :
108255.pdf (publisher's version ) (Closed access)In recent years, the mutational status of the KRAS oncogene has become incorporated into standard medical care as a predictive marker for therapeutic decisions related to patients with metastasized colorectal cancer. This is necessary, because these patients benefit from epidermal growth factor receptor (EGFR)-targeted therapy with increased progression-free survival only if the tumor does not carry a mutation in KRAS. Many different analytical platforms, both those commercially available and those developed in house, have been used within pathology laboratories to assess KRAS mutational status. For a testing laboratory to become accredited to perform such tests, it is essential that they perform reliability testing, but it has not previously been possible to perform this kind of testing on the complete workflow on a large scale without compromising reproducibility or the mimicry of the control sample. We assessed a novel synthetic control for formalin-fixed, paraffin-embedded (FFPE) tumor samples in a blind study conducted within nine laboratories across Europe. We show that FFPE material can, at least in part, mimic clinical samples and we demonstrate this control to be a valuable tool in the assessment of platforms used in testing for KRAS mutational status