59 research outputs found

    Impact of the microsporidian Nosema ceranae on the gut epithelium renewal of the honeybee, Apis mellifera

    Get PDF
    International audienceThe invasive microsporidian species, Nosema ceranae, causes nosemosis in honeybees and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the site of infection; the microsporidium can disturb the functioning of this organ and, thus, the bee physiology. Host defense against pathogens is not limited to resistance (i.e. the immune response) but also involves resilience. This process implies that the host can tolerate and repair damage inflicted by the infection– by the pathogen itself or by an excessive host immune response. Enterocyte damage caused by N. ceranae can be compensated by proliferation of intestinal stem cells (ISCs) that are under the control of multiple pathways. In the present study, we investigated the impact of N. ceranae on honeybee epithelium renewal by following the mitotic index of midgut stem cells during a 22-day N. ceranae infection. Fluorescence in situ hybridization (FISH) and immunostaining experiments were performed to follow the parasite proliferation/progression in the intestinal tissue, especially in the ISCs as they are key cells for the midgut homeostasis. We also monitored the transcriptomic profile of 7 genes coding for key proteins involved in pathways implicated in the gut epithelium renewal and homeostasis. We have shown for the first time that N. ceranae can negatively alter the gut epithelium renewal rate and disrupt some signaling pathways involved in the gut homeostasis. This alteration is correlated to a reduced longevity of N. ceranae-infected honeybees and we can assume that honeybee susceptibility to N. ceranae could be due to an impaired ability to repair gut damage

    Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea

    Get PDF
    International audienceTo test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station. The 16S rRNA sequence analysis revealed that Thaumarchaeota marine group I (MGI) were the most abundant overall but other archaeal groups like Methanosaeta were also potentially active in winter (December–March) and Euryarchaeota marine group II (MGII) were dominant in seawater in summer (April–August). Each station also contained different Thaumarchaeota MGI phylogenetic clusters, and the clusters' microdiversity was associated to specific environmental conditions suggesting the presence of ecotypes adapted to distinct ecological niches. The amoA and ureC transcript dynamics further indicated that some of the Thaumarchaeota MGI sub-clusters were involved in ammonia oxidation through the hy-drolysis of urea. Our findings show that ammonia-oxidizing Archaea and Bacteria were adapted to contrasted conditions and that the Thaumarchaeota MGI diversity probably corresponds to distinct metabolisms or life strategies

    Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes.</p> <p>Results</p> <p>First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain <it>Sphingomonas paucimobilis </it>sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality) can be used to study a complex environment efficiently.</p> <p>Conclusions</p> <p>We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments, and it may also be used to study any group of genes. The Metabolic Design software is freely available from the authors and can be downloaded and modified under general public license.</p

    Transplantation of schistosome sporocysts between host snails::A video guide

    Get PDF
    Schistosomiasis is an important parasitic disease, touching roughly 200 million people worldwide. The causative agents are different Schistosoma species. Schistosomes have a complex life cycle, with a freshwater snail as intermediate host. After infection, sporocysts develop inside the snail host and give rise to human dwelling larvae. We present here a detailed step-by-step video instruction in English, French, Spanish and Portuguese that shows how these sporocysts can be manipulated and transferred from one snail to another. This procedure provides a technical basis for different types of ex vivo modifications, such as those used in functional genomics studies

    Transplantation of schistosome sporocysts between host snails: A video guide.

    Get PDF
    Schistosomiasis is an important parasitic disease, touching roughly 200 million people worldwide. The causative agents are different Schistosoma species. Schistosomes have a complex life cycle, with a freshwater snail as intermediate host. After infection, sporocysts develop inside the snail host and give rise to human dwelling larvae. We present here a detailed step-by-step video instruction in English, French, Spanish and Portuguese that shows how these sporocysts can be manipulated and transferred from one snail to another. This procedure provides a technical basis for different types of ex vivo modifications, such as those used in functional genomics studies

    PhylArray: phylogenetic probe design algorithm for microarray

    Get PDF
    International audienceMOTIVATION: Microbial diversity is still largely unknown in most environments, such as soils. In order to get access to this microbial 'black-box', the development of powerful tools such as microarrays are necessary. However, the reliability of this approach relies on probe efficiency, in particular sensitivity, specificity and explorative power, in order to obtain an image of the microbial communities that is close to reality. RESULTS: We propose a new probe design algorithm that is able to select microarray probes targeting SSU rRNA at any phylogenetic level. This original approach, implemented in a program called 'PhylArray', designs a combination of degenerate and non-degenerate probes for each target taxon. Comparative experimental evaluations indicate that probes designed with PhylArray yield a higher sensitivity and specificity than those designed by conventional approaches. Applying the combined PhyArray/GoArrays strategy helps to optimize the hybridization performance of short probes. Finally, hybridizations with environmental targets have shown that the use of the PhylArray strategy can draw attention to even previously unknown bacteria

    Antischistosomal Activity of Trioxaquines: In Vivo Efficacy and Mechanism of Action on Schistosoma mansoni

    Get PDF
    Schistosomiasis is among the most neglected tropical diseases, since its mode of spreading tends to limit the contamination to people who are in contact with contaminated waters in endemic countries. Here we report the in vitro and in vivo anti-schistosomal activities of trioxaquines. These hybrid molecules are highly active on the larval forms of the worms and exhibit different modes of action, not only the alkylation of heme. The synergy observed with praziquantel on infected mice is in favor of the development of these trioxaquines as potential anti-schistosomal agents

    The Honeybee Gut Microbiota Is Altered after Chronic Exposure to Different Families of Insecticides and Infection by <i>Nosema ceranae</i>

    No full text
    International audienceThe gut of the European honeybee Apis mellifera is the site of exposure to multiple stressors, such as pathogens and ingested chemicals. Therefore, the gut microbiota, which contributes to host homeostasis, may be altered by these stressors. The abundance of major bacterial taxa in the gut was evaluated in response to infection with the intestinal parasite Nosema ceranae or chronic exposure to low doses of the neurotoxic insecticides coumaphos, fipronil, thiamethoxam, and imidacloprid. Experiments were performed under laboratory conditions on adult workers collected from hives in February (winter bees) and July (summer bees) and revealed season-dependent changes in the bacterial community composition. N. ceranae and a lethal fipronil treatment increased the relative abundance of both Gilliamella apicola and Snodgrassella alvi in surviving winter honeybees. The parasite and a sublethal exposure to all insecticides decreased the abundance of Bifidobacterium spp. and Lactobacillus spp. regardless of the season. The similar effects induced by insecticides belonging to distinct molecular families suggested a shared and indirect mode of action on the gut microbiota, possibly through aspecific alterations in gut homeostasis. These results demonstrate that infection and chronic exposure to low concentrations of insecticides may affect the honeybee holobiont
    • 

    corecore