872 research outputs found

    Microscopic Coexistence of Ferromagnetism and Superconductivity in Single-Crystal UCoGe

    Full text link
    Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe (TCurie2.5T_{\rm Curie} \sim 2.5 K and TSCT_{\rm SC} \sim 0.6 K) is reported from 59^{59}Co nuclear quadrupole resonance (NQR). The 59^{59}Co-NQR signal below 1 K indicates ferromagnetism throughout the sample volume, while nuclear spin-lattice relaxation rate 1/T11/T_1 in the ferromagnetic (FM) phase decreases below TSCT_{\rm SC} due to the opening of the superconducting(SC) gap. The SC state was found to be inhomogeneous, suggestive of a self-induced vortex state, potentially realizable in a FM superconductor. In addition, the 59^{59}Co-NQR spectrum around TCurieT_{\rm Curie} show that the FM transition in UCoGe possesses a first-order character, which is consistent with the theoretical prediction that the low-temperature FM transition in itinerant magnets is generically of first-order.Comment: 5 pages, 5 figure

    Spin-Wave Spectrum in `Single-Domain' Magnetic Ground State of Triangular Lattice Antiferromagnet CuFeO2

    Full text link
    By means of neutron scattering measurements, we have investigated spin-wave excitation in a collinear four-sublattice (4SL) magnetic ground state of a triangular lattice antiferromagnet CuFeO2, which has been of recent interest as a strongly frustrated magnet, a spin-lattice coupled system and a multiferroic. To avoid mixing of spin-wave spectrum from magnetic domains having three different orientations reflecting trigonal symmetry of the crystal structure, we have applied uniaxial pressure on [1-10] direction of a single crystal CuFeO2. By elastic neutron scattering measurements, we have found that only 10 MPa of the uniaxial pressure results in almost 'single domain' state in the 4SL phase. We have thus performed inelastic neutron scattering measurements using the single domain sample, and have identified two distinct spin- wave branches. The dispersion relation of the upper spin-wave branch cannot be explained by the previous theoretical model [R. S. Fishman: J. Appl. Phys. 103 (2008) 07B109]. This implies the importance of the lattice degree of freedom in the spin-wave excitation in this system, because the previous calculation neglected the effect of the spin-driven lattice distortion in the 4SL phase. We have also discussed relationship between the present results and the recently discovered "electromagnon" excitation.Comment: 5 pages, 3 figures, accepted for publication in J. Phys. Soc. Jp

    Environment-mediated structure, surface redox activity and reactivity of ceria nanoparticles

    Get PDF
    Nanomaterials, with potential application as bio-medicinal agents, exploit the chemical properties of a solid, with the ability to be transported (like a molecule) to a variety of bodily compartments. However, the chemical environment can change significantly the structure and hence properties of a nanomaterial. Accordingly, its surface reactivity is critically dependent upon the nature of the (biological) environment in which it resides. Here, we use Molecular Dynamics (MD) simulation, Density Functional Theory (DFT) and aberration corrected TEM to predict and rationalise differences in structure and hence surface reactivity of ceria nanoparticles in different environments. In particular we calculate reactivity 'fingerprints' for unreduced and reduced ceria nanoparticles immersed in water and in vacuum. Our simulations predict higher activities of ceria nanoparticles, towards oxygen release, when immersed in water because the water quenches the coordinative unsaturation of surface ions. Conversely, in vacuum, surface ions relax into the body of the nanoparticle to relieve coordinative unsaturation, which increases the energy barriers associated with oxygen release. Our simulations also reveal that reduced ceria nanoparticles are more active towards surface oxygen release compared to unreduced nanoceria. In parallel, experiment is used to explore the activities of ceria nanoparticles that have suffered a change in environment. In particular, we compare the ability of ceria nanoparticles, in an aqueous environment, to scavenge superoxide radicals compared to the same batch of nanoparticles, which have first been dried and then rehydrated. The latter show a distinct reduction in activity, which we correlate to a change in the redox chemistry associated with moving between different environments. The reactivity of ceria nanoparticles is therefore not only environment dependent, but is also influenced by the transport pathway or history required to reach the particular environment in which its reactivity is to be exploited. © 2013 The Royal Society of Chemistry

    Superconductivity in novel BiS2-based layered superconductor LaO1-xFxBiS2

    Full text link
    Layered superconductors have provided some interesting fields in condensed matter physics owing to the low dimensionality of their electronic states. For example, the high-Tc (high transition temperature) cuprates and the Fe-based superconductors possess a layered crystal structure composed of a stacking of spacer (blocking) layers and conduction (superconducting) layers, CuO2 planes or Fe-Anion layers. The spacer layers provide carriers to the conduction layers and induce exotic superconductivity. Recently, we have reported superconductivity in the novel BiS2-based layered compound Bi4O4S3. It was found that superconductivity of Bi4O4S3 originates from the BiS2 layers. The crystal structure is composed of a stacking of BiS2 superconducting layers and the spacer layers, which resembles those of high-Tc cuprate and the Fe-based superconductors. Here we report a discovery of a new type of BiS2-based layered superconductor LaO1-xFxBiS2, with a Tc as high as 10.6 K.Comment: 23 pages, 5 figures, 1 table (table caption has been revised), to appear in J. Phys. Soc. Jp

    Heavy-Mass Behavior of Ordered Perovskites ACu3Ru4O12 (A = Na, Ca, La)

    Full text link
    We synthesized ACu3Ru4O12 (A = Na, Na0.5Ca0.5, Ca, Ca0.5La0.5, La) and measured their DC magnetization, AC susceptibility, specific heat, and resistivity, in order to investigate the effects of the hetero-valent substitution. A broad peak in the DC magnetization around 200 K was observed only in CaCu3Ru4O12, suggesting the Kondo effect due to localized Cu2+ ions. However, the electronic specific heat coefficients exhibit large values not only for CaCu3Ru4O12 but also for all the other samples. Moreover, the Wilson ratio and the Kadowaki-Woods ratio of our samples are all similar to the values of other heavy-fermion compounds. These results question the Kondo effect as the dominant origin of the mass enhancement, and rather indicate the importance of correlations among itinerant Ru electrons.Comment: 6 pages, 6 figures, to be published in J. Phys. Soc. Jp

    Differentiation enhances aminolevulinic acid-dependent photodynamic treatment of LNCaP prostate cancer cells

    Get PDF
    Photodynamic therapy using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) may be applied to the treatment of neoplasms in a variety of organs. In order to enhance existing regimens of photodynamic therapy, we investigated the effects of adding differentiation therapy to photodynamic therapy in human prostate cancer cells in vitro. The objective of differentiation therapy per se is to reverse the lack of differentiation in cancer cells using pharmacological agents. The motivation for this study was to exploit the differentiation-dependent expression of some heme enzymes to enhance tumour cell toxicity of ALA-photodynamic therapy. A short course of differentiation therapy was applied to increase PpIX formation during subsequent ALA exposure. Using the synthetic androgen R1881, isomers of retinoic acid, and analogues of vitamin D for 3 to 4 days, exogenous ALA-dependent PpIX formation in LNCaP cells was increased, along with markers for growth arrest and for differentiation. As a consequence of higher PpIX levels, cytotoxic effects of visible light exposure were also enhanced. Short-term differentiation therapy increased not only the overall PpIX production but also reduced that fraction of cells that contained low PpIX levels as demonstrated by flow cytometry and fluorescence microscopy. This study suggests that it will be feasible to develop protocols combining short-term differentiation therapy with photodynamic therapy for enhanced photosensitisation

    On Quantum Markov Chains on Cayley tree II: Phase transitions for the associated chain with XY-model on the Cayley tree of order three

    Full text link
    In the present paper we study forward Quantum Markov Chains (QMC) defined on a Cayley tree. Using the tree structure of graphs, we give a construction of quantum Markov chains on a Cayley tree. By means of such constructions we prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we mean the existence of two now quasi equivalent QMC for the given family of interaction operators {K}\{K_{}\}.Comment: 34 pages, 1 figur

    Quasi-molecular and atomic phases of dense solid hydrogen

    Full text link
    The high-pressure phases of solid hydrogen are of fundamental interest and relevant to the interior of giant planets; however, knowledge of these phases is far from complete. Particle swarm optimization (PSO) techniques were applied to a structural search, yielding hitherto unexpected high-pressure phases of solid hydrogen at pressures up to 5 TPa. An exotic quasi-molecular mC24 structure (space group C2/c, stable at 0.47-0.59 TPa) with two types of intramolecular bonds was predicted, providing a deeper understanding of molecular dissociation in solid hydrogen, which has been a mystery for decades. We further predicted the existence of two atomic phases: (i) the oC12 structure (space group Cmcm, stable at > 2.1 TPa), consisting of planar H3 clusters, and (ii) the cI16 structure, previously observed in lithium and sodium, stable above 3.5 TPa upon consideration of the zero-point energy. This work clearly revised the known zero-temperature and high-pressure (>0.47 TPa) phase diagram for solid hydrogen and has implications for the constituent structures of giant planets.Comment: accepted in The Journal of Physical Chemistr

    Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data.

    Get PDF
    BackgroundAlthough studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.MethodsWe used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo.ResultsIn mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors.ConclusionsWe speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth
    corecore