17 research outputs found
Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease
sharma et al. define a new primary atopic disorder caused by heterozygous gain-of-function variants in STAT6. this results in severe, early-onset allergies, and is seen in 16 patients from 10 families. Anti-IL-4R & alpha; antibody and JAK inhibitor treatment were highly effective.STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. we have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. the cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). all patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and T(H)2 skewing. Precision treatment with the anti-IL-4R & alpha; antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. this study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder
Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease
STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder
Delayed Diagnosis of Chronic Necrotizing Granulomatous Skin Lesions due to TAP2 Deficiency.
Major histocompatibility complex class I (MHC-I) deficiency, also known as bare lymphocyte syndrome type 1 (BLS-1), is a rare autosomal recessively inherited immunodeficiency disorder with remarkable clinical and biological heterogeneity. Transporter associated with antigen processing (TAP) is a member of the ATP-binding cassette superfamily of transporters and consists of two subunits, TAP1 or TAP2. Any defect resulting from a mutation or deletion of these two subunits may adversely affect the peptide translocation in the endoplasmic reticulum, which is an important process for properly assembling MHC-I molecules. To date, only 12 TAP2-deficient patients were reported in the literature. Herein, we described two Iranian cases with 2 and 3 decades of delayed diagnosis of chronic necrotizing granulomatous skin lesions due to TAP2 deficiency without pulmonary involvement. Segregation analysis in family members identified 3 additional homozygous asymptomatic carriers. In both asymptomatic and symptomatic carriers, HLA-I expression was only 4-15% of the one observed in healthy controls. We performed the first deep immunophenotyping in TAP2-deficient patients. While total CD8 T cell counts were normal as previously reported, the patients showed strongly impaired naïve CD8 T cell counts. Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cell counts were increased
Clinical, Immunological, and Genetic Findings in Iranian Patients with MHC-II Deficiency: Confirmation of c.162delG RFXANK Founder Mutation in the Iranian Population
PurposeMajor histocompatibility complex class II (MHC-II) deficiency is a rare inborn error of immunity (IEI). Impaired antigen presentation to CD4 + T cells results in combined immunodeficiency (CID). Patients typically present with severe respiratory and gastrointestinal tract infections at early ages. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy.MethodsWe describe the clinical, immunologic, and genetic features of eighteen unrelated Iranian patients with MHC-II deficiency.ResultsConsanguinity was present in all affected families. The median age at the initial presentation was 5.5 months (range 7 days to 18 years). The main symptoms included failure to thrive, persistent diarrhea, and pneumonia. Autoimmune and neurologic features were also documented in about one-third of the patients, respectively. Thirteen patients carried RFXANK gene mutations, two carried RFX5 gene mutations, and three carried a RFXAP gene mutation. Six patients shared the same RFXANK founder mutation (c.162delG); limited to the Iranian population and dated to approximately 1296 years ago. Four of the patients underwent HSCT; three of them are alive. On the other hand, nine of the fourteen patients who did not undergo HSCT had a poor prognosis and died.ConclusionMHC-II deficiency is not rare in Iran, with a high rate of consanguinity. It should be considered in the differential diagnosis of CID at any age. With the limited access to HSCT and its variable results in MHC-II deficiency, implementing genetic counseling and family planning for the affected families are mandatory. We are better determined to study the c.162delG RFXANK heterozygous mutation frequency in the Iranian population
Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines.
Vaccination against measles, mumps, and rubella (MMR) and yellow fever (YF) with live attenuated viruses can rarely cause life-threatening disease. Severe illness by MMR vaccines can be caused by inborn errors of type I and/or III interferon (IFN) immunity (mutations in IFNAR2, STAT1, or STAT2). Adverse reactions to the YF vaccine have remained unexplained. We report two otherwise healthy patients, a 9-yr-old boy in Iran with severe measles vaccine disease at 1 yr and a 14-yr-old girl in Brazil with viscerotropic disease caused by the YF vaccine at 12 yr. The Iranian patient is homozygous and the Brazilian patient compound heterozygous for loss-of-function IFNAR1 variations. Patient-derived fibroblasts are susceptible to viruses, including the YF and measles virus vaccine strains, in the absence or presence of exogenous type I IFN. The patients' fibroblast phenotypes are rescued with WT IFNAR1 Autosomal recessive, complete IFNAR1 deficiency can result in life-threatening complications of vaccination with live attenuated measles and YF viruses in previously healthy individuals