601 research outputs found

    Integrated olfactory receptor and microarray gene expression databases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression patterns of olfactory receptors (ORs) are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD) to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB), which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction.</p> <p>Description</p> <p>ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data.</p> <p>Conclusion</p> <p>ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.</p

    Self-organization in the olfactory system: one shot odor recognition in insects

    Get PDF
    We show in a model of spiking neurons that synaptic plasticity in the mushroom bodies in combination with the general fan-in, fan-out properties of the early processing layers of the olfactory system might be sufficient to account for its efficient recognition of odors. For a large variety of initial conditions the model system consistently finds a working solution without any fine-tuning, and is, therefore, inherently robust. We demonstrate that gain control through the known feedforward inhibition of lateral horn interneurons increases the capacity of the system but is not essential for its general function. We also predict an upper limit for the number of odor classes Drosophila can discriminate based on the number and connectivity of its olfactory neurons

    T Cell-Intrinsic and -Extrinsic Contributions of the IFNAR/STAT1-Axis to Thymocyte Survival

    Get PDF
    STAT1 is an essential part of interferon signaling, and STAT1-deficiency results in heightened susceptibility to infections or autoimmunity in both mice and humans. Here we report that mice lacking the IFNα/β-receptor (IFNAR1) or STAT1 display impaired deletion of autoreactive CD4+CD8+-T-cells. Strikingly, co-existence of WT T cells restored thymic elimination of self-reactive STAT1-deficient CD4+CD8+-T cells. Analysis of STAT1-deficient thymocytes further revealed reduced Bim expression, which was restored in the presence of WT T cells. These results indicate that type I interferons and STAT1 play an important role in the survival of MHC class I-restricted T cells in a T cell intrinsic and non-cell intrinsic manner that involves regulation of Bim expression through feedback provided by mature STAT1-competent T cells

    Identification of the Transgenic Integration Site in Immunodeficient tgε26 Human CD3ε Transgenic Mice

    Get PDF
    A strain of human CD3ε transgenic mice, tgε26, exhibits severe immunodeficiency associated with early arrest of T cell development. Complete loss of T cells is observed in homozygous tgε26 mice, but not in heterozygotes, suggesting that genomic disruption due to transgenic integration may contribute to the arrest of T cell development. Here we report the identification of the transgenic integration site in tgε26 mice. We found that multiple copies of the human CD3ε transgene are inserted between the Sstr5 and Metrn loci on chromosome 17, and that this is accompanied by duplication of the neighboring genomic region spanning 323 kb. However, none of the genes in this region were abrogated. These results suggest that the severe immunodeficiency seen in tgε26 mice is not due to gene disruption resulting from transgenic integration

    A Framework for Exploring Functional Variability in Olfactory Receptor Genes

    Get PDF
    BACKGROUND: Olfactory receptors (ORs) are the largest gene family in mammalian genomes. Since nearly all OR genes are orphan receptors, inference of functional similarity or differences between odorant receptors typically relies on sequence comparisons. Based on the alignment of entire coding region sequence, OR genes are classified into families and subfamilies, a classification that is believed to be a proxy for OR gene functional variability. However, the assumption that overall protein sequence diversity is a good proxy for functional properties is untested. METHODOLOGY: Here, we propose an alternative sequence-based approach to infer the similarities and differences in OR binding capacity. Our approach is based on similarities and differences in the predicted binding pockets of OR genes, rather than on the entire OR coding region. CONCLUSIONS: Interestingly, our approach yields markedly different results compared to the analysis based on the entire OR coding-regions. While neither approach can be tested at this time, the discrepancy between the two calls into question the assumption that the current classification reliably reflects OR gene functional variability

    A Gateway MultiSite Recombination Cloning Toolkit

    Get PDF
    The generation of DNA constructs is often a rate-limiting step in conducting biological experiments. Recombination cloning of single DNA fragments using the Gateway system provided an advance over traditional restriction enzyme cloning due to increases in efficiency and reliability. Here we introduce a series of entry clones and a destination vector for use in two, three, and four fragment Gateway MultiSite recombination cloning whose advantages include increased flexibility and versatility. In contrast to Gateway single-fragment cloning approaches where variations are typically incorporated into model system-specific destination vectors, our Gateway MultiSite cloning strategy incorporates variations in easily generated entry clones that are model system-independent. In particular, we present entry clones containing insertions of GAL4, QF, UAS, QUAS, eGFP, and mCherry, among others, and demonstrate their in vivo functionality in Drosophila by using them to generate expression clones including GAL4 and QF drivers for various trp ion channel family members, UAS and QUAS excitatory and inhibitory light-gated ion channels, and QUAS red and green fluorescent synaptic vesicle markers. We thus establish a starter toolkit of modular Gateway MultiSite entry clones potentially adaptable to any model system. An inventory of entry clones and destination vectors for Gateway MultiSite cloning has also been established (www.gatewaymultisite.org)

    Molecular evolutionary characterization of a V1R subfamily unique to strepsirrhine primates.

    Get PDF
    Vomeronasal receptor genes have frequently been invoked as integral to the establishment and maintenance of species boundaries among mammals due to the elaborate one-to-one correspondence between semiochemical signals and neuronal sensory inputs. Here, we report the most extensive sample of vomeronasal receptor class 1 (V1R) sequences ever generated for a diverse yet phylogenetically coherent group of mammals, the tooth-combed primates (suborder Strepsirrhini). Phylogenetic analysis confirms our intensive sampling from a single V1R subfamily, apparently unique to the strepsirrhine primates. We designate this subfamily as V1Rstrep. The subfamily retains extensive repertoires of gene copies that descend from an ancestral gene duplication that appears to have occurred prior to the diversification of all lemuriform primates excluding the basal genus Daubentonia (the aye-aye). We refer to the descendent clades as V1Rstrep-α and V1Rstrep-β. Comparison of the two clades reveals different amino acid compositions corresponding to the predicted ligand-binding site and thus potentially to altered functional profiles between the two. In agreement with previous studies of the mouse lemur (genus, Microcebus), the majority of V1Rstrep gene copies appear to be intact and under strong positive selection, particularly within transmembrane regions. Finally, despite the surprisingly high number of gene copies identified in this study, it is nonetheless probable that V1R diversity remains underestimated in these nonmodel primates and that complete characterization will be limited until high-coverage assembled genomes are available
    • …
    corecore