293 research outputs found

    Graphene-Capped Liquid Thin Films for Electrochemical Operando X-ray Spectroscopy and Scanning Electron Microscopy

    Get PDF
    Electrochemistry is a promising building block for the global transition to a sustainable energy market. Particularly the electroreduction of CO2 and the electrolysis of water might be strategic elements for chemical energy conversion. The reactions of interest are inner-sphere reactions, which occur on the surface of the electrode, and the biased interface between the electrode surface and the electrolyte is of central importance to the reactivity of an electrode. However, a potential-dependent observation of this buried interface is challenging, which slows the development of catalyst materials. Here we describe a sample architecture using a graphene blanket that allows surface sensitive studies of biased electrochemical interfaces. At the examples of near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and environmental scanning electron microscopy (ESEM), we show that the combination of a graphene blanket and a permeable membrane leads to the formation of a liquid thin film between them. This liquid thin film is stable against a water partial pressure below 1 mbar. These properties of the sample assembly extend the study of solid–liquid interfaces to highly surface sensitive techniques, such as electron spectroscopy/microscopy. In fact, photoelectrons with an effective attenuation length of only 10 Å can be detected, which is close to the absolute minimum possible in aqueous solutions. The in-situ cells and the sample preparation necessary to employ our method are comparatively simple. Transferring this approach to other surface sensitive measurement techniques should therefore be straightforward. We see our approach as a starting point for more studies on electrochemical interfaces and surface processes under applied potential. Such studies would be of high value for the rational design of electrocatalysts

    User-made immobilities: a transitions perspective

    Get PDF
    In this paper we aim to conceptualize the role of users in creating, expanding and stabilizing the automobility system. Drawing on transition studies we offer a typology of user roles including user-producers, user-legitimators, user-intermediaries, user-citizens and user-consumers, and explore it on the historical transition to the automobile regime in the USA. We find that users play an important role during the entire transition process, but some roles are more salient than others in particular phases. Another finding is that the success of the transition depends on the stabilization of the emerging regime that will trigger upscaling in terms of the numbers of adopters. The findings are used to reflect on potential crossovers between transitions and mobilities research

    Machine learning in Huntington’s disease:exploring the Enroll-HD dataset for prognosis and driving capability prediction

    Get PDF
    Background: In biomedicine, machine learning (ML) has proven beneficial for the prognosis and diagnosis of different diseases, including cancer and neurodegenerative disorders. For rare diseases, however, the requirement for large datasets often prevents this approach. Huntington’s disease (HD) is a rare neurodegenerative disorder caused by a CAG repeat expansion in the coding region of the huntingtin gene. The world’s largest observational study for HD, Enroll-HD, describes over 21,000 participants. As such, Enroll-HD is amenable to ML methods. In this study, we pre-processed and imputed Enroll-HD with ML methods to maximise the inclusion of participants and variables. With this dataset we developed models to improve the prediction of the age at onset (AAO) and compared it to the well-established Langbehn formula. In addition, we used recurrent neural networks (RNNs) to demonstrate the utility of ML methods for longitudinal datasets, assessing driving capabilities by learning from previous participant assessments. Results: Simple pre-processing imputed around 42% of missing values in Enroll-HD. Also, 167 variables were retained as a result of imputing with ML. We found that multiple ML models were able to outperform the Langbehn formula. The best ML model (light gradient boosting machine) improved the prognosis of AAO compared to the Langbehn formula by 9.2%, based on root mean squared error in the test set. In addition, our ML model provides more accurate prognosis for a wider CAG repeat range compared to the Langbehn formula. Driving capability was predicted with an accuracy of 85.2%. The resulting pre-processing workflow and code to train the ML models are available to be used for related HD predictions at: https://github.com/JasperO98/hdml/tree/main . Conclusions: Our pre-processing workflow made it possible to resolve the missing values and include most participants and variables in Enroll-HD. We show the added value of a ML approach, which improved AAO predictions and allowed for the development of an advisory model that can assist clinicians and participants in estimating future driving capability.</p

    A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours

    Get PDF
    To assess tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and clinical activity of the dual epidermal growth factor receptor (EGFR) 1 and 2 (HER2) tyrosine kinase inhibitor BIBW 2992. An escalating schedule of once-daily (OD) BIBW 2992 for 14 days followed by 14 days off medication was explored. Thirty-eight patients were enrolled. Dose levels were 10, 20, 30, 45, 70, 85, and 100 mg. At 100 mg dose-limiting toxicity (DLT) (common toxicity criteria grade 3 skin rash and grade 3 diarrhoea despite treatment with loperamide) occurred in two patients. In the next-lower dose of 70 mg, DLT (grade 3 fatigue and ALAT elevation) occurred in one of six patients. An intermediate dose level of 85 mg was studied. Here DLT occurred in two patients (grade 3 diarrhoea despite treatment and grade 2 diarrhoea lasting more than 7 days despite treatment). An additional 12 patients were treated at 70 mg. BIBW 2992 PK after single and multiple doses revealed moderately fast absorption, and no deviation from dose proportionality. Pharmacodynamics analysis in skin biopsies did not show significant changes in EGFR-associated biomarkers. However, a significant inhibitory effect on the proliferation index of epidermal keratinocytes was observed. No partial or complete responses were observed, stable disease lasting more than four cycles was seen in seven patients. The recommended dose for studies with BIBW 2992 for 14 days followed by 14 days off medication is 70 mg OD

    Revealing the active phase of copper during the electroreduction of CO2 in aqueous electrolyte by correlating in situ x-ray spectroscopy and in situ electron microscopy

    Get PDF
    The variation in the morphology and electronic structure of copper during the electroreduction of CO2 into valuable hydrocarbons and alcohols was revealed by combining in situ surface- and bulk-sensitive X-ray spectroscopies with electrochemical scanning electron microscopy. These experiments proved that the electrified interface surface and near-surface are dominated by reduced copper. The selectivity to the formation of the key C–C bond is enhanced at higher cathodic potentials as a consequence of increased copper metallicity. In addition, the reduction of the copper oxide electrode and oxygen loss in the lattice reconstructs the electrode to yield a rougher surface with more uncoordinated sites, which controls the dissociation barrier of water and CO2. Thus, according to these results, copper oxide species can only be stabilized kinetically under CO2 reduction reaction conditions

    Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells

    Get PDF
    Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. © 2013 Song et al

    Implementation of laparoscopic hysterectomy for endometrial cancer over the past decade

    Get PDF
    Background: Laparoscopic hysterectomy (LH) for the treatment of early-stage endometrial carcinoma/cancer (EC) has demonstrated to be safe in several randomized controlled trials. Yet, data on implementation of LH in clinical practice are limited. In the present study, implementation of LH for EC was evaluated in a large oncology network in the Netherlands. Results: Retrospectively, a total of 556 EC patients with FIGO stage I-II were registered in the selected years. The proportion of LH gradually increased from 11% in 2006 to 85% in 2015. LH was more often performed in patients with low-grade EC and was not related to the studied patient characteristics. The introduction of TLH was frequently preceded by LAVH. Patients treated in teaching hospitals were more likely to undergo a LH compared to patients in non-teaching hospitals. The conversion rate was 7.7%, and the overall complication rates between LH and AH were comparable, but less postoperative complications in LH. Conclusions: Implementation of laparoscopic hysterectomy for early-stage EC increased from 11 to 85% in 10 years. Implementation of TLH was often preceded by LAVH and was faster in teaching hospitals

    Behavior in behavioral strategy : capturing, measuring, analyzing

    Get PDF
    Measuring behavior requires research methods that can capture observed outcomes and expose underlying processes and mechanisms. In this chapter, we present a toolbox of instruments and techniques we designed experimental tasks to simulate decision environments and capture behavior. We deployed protocol analysis and text analysis to examine the underlying cognitive processes. In combination, these can simultaneously grasp antecedents, outcomes, processes, and mechanisms. We applied them to collect rich behavioral data on two key topics in strategic management: the exploration–exploitation trade-off and strategic risk-taking. This mix of methods is particularly useful in describing actual behavior as it is, not as it should be, replacing assumptions with data and offering a finer-grained perspective of strategic decision-making

    Targeting Several CAG Expansion Diseases by a Single Antisense Oligonucleotide

    Get PDF
    To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2′-O-methyl phosphorothioate (CUG)n triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG)7, also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well
    • …
    corecore