6,989 research outputs found

    Telluric correction in the near-infrared: Standard star or synthetic transmission?

    Full text link
    Context. The atmospheric absorption of the Earth is an important limiting factor for ground-based spectroscopic observations and the near-infrared and infrared regions are the most affected. Several software packages that produce a synthetic atmospheric transmission spectrum have been developed to correct for the telluric absorption; these are Molecfit, TelFit, and TAPAS. Aims. Our goal is to compare the correction achieved using these three telluric correction packages and the division by a telluric standard star. We want to evaluate the best method to correct near-infrared high-resolution spectra as well as the limitations of each software package and methodology. Methods. We applied the telluric correction methods to CRIRES archival data taken in the J and K bands. We explored how the achieved correction level varies depending on the atmospheric T-P profile used in the modelling, the depth of the atmospheric lines, and the molecules creating the absorption. Results. We found that the Molecfit and TelFit corrections lead to smaller residuals for the water lines. The standard star method corrects best the oxygen lines. The Molecfit package and the standard star method corrections result in global offsets always below 0.5% for all lines; the offset is similar with TelFit and TAPAS for the H2O lines and around 1% for the O2 lines. All methods and software packages result in a scatter between 3% and 7% inside the telluric lines. The use of a tailored atmospheric profile for the observatory leads to a scatter two times smaller, and the correction level improves with lower values of precipitable water vapour. Conclusions. The synthetic transmission methods lead to an improved correction compared to the standard star method for the water lines in the J band with no loss of telescope time, but the oxygen lines were better corrected by the standard star method.Comment: 18 pages, 13 figures, Accepted to A&

    Mode mixing in asymmetric double trench photonic crystal waveguides

    Full text link
    e investigate both experimentally and theoretically the waveguiding properties of a novel double trench waveguide where a conventional single-mode strip waveguide is embedded in a two dimensional photonic crystal (PhC) slab formed in silicon on insulator (SOI) wafers. We demonstrate that the bandwidth for relatively low-loss (50dB/cm) waveguiding is significantly expanded to 250nm covering almost all the photonic band gap owing to nearly linear dispersion of the TE-like waveguiding mode. The flat transmission spectrum however is interrupted by numerous narrow stop bands. We found that these stop bands can be attributed to anti-crossing between TE-like (positive parity) and TM-like (negative parity) modes. This effect is a direct result of the strong asymmetry of the waveguides that have an upper cladding of air and lower cladding of oxide. To our knowledge this is the first demonstration of the effects of cladding asymmetry on the transmission characteristics of the PhC slab waveguides.Comment: 7 pages, 6 figure

    Learning to Dress {3D} People in Generative Clothing

    Get PDF
    Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shapes. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term in SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses. The model, code and data are available for research purposes at https://cape.is.tue.mpg.de.Comment: CVPR-2020 camera ready. Code and data are available at https://cape.is.tue.mpg.d

    Beehives, Booze and Suffragettes: The “Sad Case” of Ellen S. Tupper (1822–1888), the “Bee Woman” and “Iowa Queen Bee”

    Get PDF
    ELLEN S. TUPPER was a 19th century expert bee-keeper who was most active during and shortly after the end of the American Civil War. A vigorous writer and apiarist, primarily focused on business interests and opportunities, she became the first female editor of an entomological journal in 1869. Joining the mid-western suffragettes, who at this time were also strongly linked to the temperance societies, she was soon presented as a role model of a successful businesswoman the early feminist movement. Together with ANNIE NOWLIN SAVERY (1831-1891), a leading American suffragette of her time, she established the "Italian Bee Company". For a short period, ELLEN S. TUPPER successfully imported and distributed Italian queens and bees to an interested American audience, while she actively promoted bee keeping as a suitable endeavour for women. Her reports on successful fertilization of bee queens that were held in confinement sparked a lively and controversial discussion among entomologists not only in America but also in Europe. At the height of her career she became the first female lecturer in apiology and the first woman elected to serve as an officer in a national entomological society. At the same meeting more than 30 other suffragettes joined the "North American Beekeepers' Society". This was a symbolic and perhaps even defining moment of female activity in science during the 19th century. Her activities soon earned her nicknames such as "Iowa Queen Bee" or the "Bee Woman". However, financial difficulties put an end to most of her business endeavours. Her career as an apiarist and editor came to a disgraceful end when she was incarcerated for the forgery of notes presented at several banks, subsequently acquitted on the ground of insanity. The forgery trial though has overshadowed ELLEN S. TUPPER's legacy in the history of women in science: As a farmer's wife in one of the frontier towns of the Wild West, in a county, which on her first arrival did not even possess a printing press, she was able to start a successful and impressive career as an editress. With her work she and a few like-minded supporters practically single-handedly recruited more women for entomological societies than all other European and American societies and institutions in the 19th century together. For nearly two and a half decades she went on a stubborn and effective crusade to convince women to become bee-keepers

    Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5

    Full text link
    Electronic nematics are exotic states of matter where electronic interactions break a rotational symmetry of the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Intriguingly such phases appear in the copper- and iron-based superconductors, and their role in establishing high-temperature superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of nematic character in the heavy fermion superconductor CeRhIn5. We observe a field-induced breaking of the electronic tetragonal symmetry of in the vicinity of an antiferromagnetic (AFM) quantum phase transition at Hc~50T. This phase appears in out-of-plane fields of H*~28T and is characterized by substantial in-plane resistivity anisotropy. The anisotropy can be aligned by a small in-plane field component, with no apparent connection to the underlying crystal structure. Furthermore no anomalies are observed in the magnetic torque, suggesting the absence of metamagnetic transitions in this field range. These observations are indicative of an electronic nematic character of the high field state in CeRhIn5. The appearance of nematic behavior in a phenotypical heavy fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be a commonality in such materials

    One session of fMRI-Neurofeedback training on motor imagery modulates whole-brain effective connectivity and dynamical complexity

    Get PDF
    In the past decade, several studies have shown that Neurofeedback (NFB) by functional magnetic resonance imaging can alter the functional coupling of targeted and non-targeted areas. However, the causal mechanisms underlying these changes remain uncertain. Here, we applied a whole-brain dynamical model to estimate Effective Connectivity (EC) profiles of resting-state data acquired before and immediately after a single-session NFB training for 17 participants who underwent motor imagery NFB training and 16 healthy controls who received sham feedback. Within-group and between-group classification analyses revealed that only for the NFB group it was possible to accurately discriminate between the 2 resting-state sessions. NFB training-related signatures were reflected in a support network of direct connections between areas involved in reward processing and implicit learning, together with regions belonging to the somatomotor, control, attention, and default mode networks, identified through a recursive-feature elimination procedure. By applying a data-driven approach to explore NFB-induced changes in spatiotemporal dynamics, we demonstrated that these regions also showed decreased switching between different brain states (i.e. metastability) only following real NFB training. Overall, our findings contribute to the understanding of NFB impact on the whole brain's structure and function by shedding light on the direct connections between brain areas affected by NFB training

    Inverse Low Gain Avalanche Detectors (iLGADs) for precise tracking and timing applications

    Full text link
    Low Gain Avalanche Detector (LGAD) is the baseline sensing technology of the recently proposed Minimum Ionizing Particle (MIP) end-cap timing detectors (MTD) at the Atlas and CMS experiments. The current MTD sensor is designed as a multi-pad matrix detector delivering a poor position resolution, due to the relatively large pad area, around 1 mm2mm^2; and a good timing resolution, around 20-30 ps. Besides, in his current technological incarnation, the timing resolution of the MTD LGAD sensors is severely degraded once the MIP particle hits the inter-pad region since the signal amplification is missing for this region. This limitation is named as the LGAD fill-factor problem. To overcome the fill factor problem and the poor position resolution of the MTD LGAD sensors, a p-in-p LGAD (iLGAD) was introduced. Contrary to the conventional LGAD, the iLGAD has a non-segmented deep p-well (the multiplication layer). Therefore, iLGADs should ideally present a constant gain value over all the sensitive region of the device without gain drops between the signal collecting electrodes; in other words, iLGADs should have a 100%{\%} fill-factor by design. In this paper, tracking and timing performance of the first iLGAD prototypes is presented.Comment: Conference Proceedings of VCI2019, 15th Vienna Conference of Instrumentation, February 18-22, 2019, Vienna, Austri

    Neural correlates of listening to varying synchrony between beats in samba percussion and relations to feeling the groove

    Get PDF
    Listening to samba percussion often elicits feelings of pleasure and the desire to move with the beat—an experience sometimes referred to as “feeling the groove”- as well as social connectedness. Here we investigated the effects of performance timing in a Brazilian samba percussion ensemble on listeners’ experienced pleasantness and the desire to move/dance in a behavioral experiment, as well as on neural processing as assessed via functional magnetic resonance imaging (fMRI). Participants listened to different excerpts of samba percussion produced by multiple instruments that either were “in sync”, with no additional asynchrony between instrumental parts other than what is usual in naturalistic recordings, or were presented “out of sync” by delaying the snare drums (by 28, 55, or 83 ms). Results of the behavioral experiment showed increasing pleasantness and desire to move/dance with increasing synchrony between instruments. Analysis of hemodynamic responses revealed stronger bilateral brain activity in the supplementary motor area, the left premotor area, and the left middle frontal gyrus with increasing synchrony between instruments. Listening to “in sync” percussion thus strengthens audio-motor interactions by recruiting motor-related brain areas involved in rhythm processing and beat perception to a higher degree. Such motor related activity may form the basis for “feeling the groove” and the associated desire to move to music. Furthermore, in an exploratory analysis we found that participants who reported stronger emotional responses to samba percussion in everyday life showed higher activity in the subgenual cingulate cortex, an area involved in prosocial emotions, social group identification and social bonding

    Environmental and Energy Performance of the Biomass to Synthetic Natural Gas Supply Chain

    Get PDF
    A quarter of the total primary energy demand in the European Union is met by natural gas. Synthetic natural gas produced through biomass gasification can contribute to a more sustainable energy supply system. A chain analysis of the energetic performance of synthetic natural gas where the upstream, midstream and downstream part are included has not been found in literature. The energy performance of the possible large-scale application of synthetic natural gas is therefore unsure. A model was designed to analyse the performance of the biomass to synthetic natural gas chain and to estimate the effect of 1% synthetic natural gas in the energy system. A break-even distance is introduced to determine whether it is energetically feasible to apply pretreatment. Results show that torrefaction and pelleting are energetically unfeasible within the European Union. Emissions can be reduced with almost 70% compared to a fossil reference scenario. Over 1.2 Mha is required to fulfil 0.25% of the total primary energy demand in the European Union
    • …
    corecore