13 research outputs found

    ZEBRA: Zero-Effort Bilateral Recurring Authentication (Companion report)

    Get PDF
    We describe and evaluate Zero-Effort Bilateral Recurring Authentication (ZEBRA) in our paper that appears in IEEE Symposium on Security and Privacy, May 2014. In this report we provide a more detailed comparative evaluation of ZEBRA against other related authentication schemes. The abstract of the paper follows. Common authentication methods based on passwords, tokens, or fingerprints perform one-time authentication and rely on users to log out from the computer terminal when they leave. Users often do not log out, however, which is a security risk. The most common solution, inactivity timeouts, inevitably fail security (too long a timeout) or usability (too short a timeout) goals. One solution is to authenticate users continuously while they are using the terminal and automatically log them out when they leave. Several solutions are based on user proximity, but these are not sufficient: they only confirm whether the user is nearby but not whether the user is actually using the terminal. Proposed solutions based on behavioral biometric authentication (e.g., keystroke dynamics) may not be reliable, as a recent study suggests. To address this problem we propose ZEBRA. In ZEBRA, a user wears a bracelet (with a built-in accelerometer, gyroscope, and radio) on her dominant wrist. When the user interacts with a computer terminal, the bracelet records the wrist movement, processes it, and sends it to the terminal. The terminal compares the wrist movement with the inputs it receives from the user (via keyboard and mouse), and confirms the continued presence of the user only if they correlate. Because the bracelet is on the same hand that provides inputs to the terminal, the accelerometer and gyroscope data and input events received by the terminal should correlate because their source is the same - the user\u27s hand movement. In our experiments ZEBRA performed continuous authentication with 85% accuracy in verifying the correct user and identified all adversaries within 11 s. For a different threshold that trades security for usability, ZEBRA correctly verified 90% of users and identified all adversaries within 50 seconds

    ZEBRA: Zero-Effort Bilateral Recurring Authentication

    Get PDF
    Abstract-Common authentication methods based on passwords, tokens, or fingerprints perform one-time authentication and rely on users to log out from the computer terminal when they leave. Users often do not log out, however, which is a security risk. The most common solution, inactivity timeouts, inevitably fail security (too long a timeout) or usability (too short a timeout) goals. One solution is to authenticate users continuously while they are using the terminal and automatically log them out when they leave. Several solutions are based on user proximity, but these are not sufficient: they only confirm whether the user is nearby but not whether the user is actually using the terminal. Proposed solutions based on behavioral biometric authentication (e.g., keystroke dynamics) may not be reliable, as a recent study suggests. To address this problem we propose Zero-Effort Bilateral Recurring Authentication (ZEBRA). In ZEBRA, a user wears a bracelet (with a built-in accelerometer, gyroscope, and radio) on her dominant wrist. When the user interacts with a computer terminal, the bracelet records the wrist movement, processes it, and sends it to the terminal. The terminal compares the wrist movement with the inputs it receives from the user (via keyboard and mouse), and confirms the continued presence of the user only if they correlate. Because the bracelet is on the same hand that provides inputs to the terminal, the accelerometer and gyroscope data and input events received by the terminal should correlate because their source is the same -the user's hand movement. In our experiments ZEBRA performed continuous authentication with 85 % accuracy in verifying the correct user and identified all adversaries within 11 s. For a different threshold that trades security for usability, ZEBRA correctly verified 90 % of users and identified all adversaries within 50 s

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Privacy-Aware Collaboration Among Untrusted Resource Constrained Devices

    Get PDF
    Individuals are increasingly encouraged to share private information with service providers. Privacy is relaxed to increase the utility of the data for the provider. This dissertation offers an alternative approach in which raw data stay with individuals and only coarse aggregates are sent to analysts. A challenge is the reliance on constrained devices for data collection. This dissertation demonstrates the practicality of this approach by designing and implementing privacy-aware systems that collect information using low-cost or ultra-low-power microcontrollers. Smart meters can generate certified readings suitable for use in a privacy-preserving system every 10 s using a Texas Instruments MSP430 microcontroller. CRFIDs-batteryless devices that operate on harvested energy from RF-can generate encrypted sub-aggregates in 17 s to contribute to a privacy-preserving aggregation system that does not rely on a trusted aggregator. A secure communication channel for CRFID tags via untrusted relays achieves a throughput of 18 Kbps
    corecore