152 research outputs found
Young-type interference in projectile-electron loss in energetic ion-molecule collisions
Under certain conditions an electron bound in a fast projectile-ion,
colliding with a molecule, interacts mainly with the nuclei and inner shell
electrons of atoms forming the molecule. Due to their compact localization in
space and distinct separation from each other these molecular centers play in
such collisions a role similar to that of optical slits in light scattering
leading to pronounced interference in the spectra of the electron emitted from
the projectile.Comment: 4 pages, 3 figure
Symmetric eikonal model for projectile-electron excitation and loss in relativistic ion-atom collisions
At impact energies GeV/u the projectile-electron
excitation and loss occurring in collisions between highly charged ions and
neutral atoms is already strongly influenced by the presence of atomic
electrons. In order to treat these processes in collisions with heavy atoms we
generalize the symmetric eikonal model, used earlier for considerations of
electron transitions in ion-atom collisions within the scope of a three-body
Coulomb problem. We show that at asymptotically high collision energies this
model leads to an exact transition amplitude and is very well suited to
describe the projectile-electron excitation and loss at energies above a few
GeV/u. In particular, by considering a number of examples we demonstrate
advantages of this model over the first Born approximation at impact energies
--30 GeV/u, which are of special interest for atomic physics
experiments at the future GSI facilities.Comment: 14 pages, 5 figure
Influence of Collision Cascade Statistics on Pattern Formation of Ion-Sputtered Surfaces
Theoretical continuum models that describe the formation of patterns on
surfaces of targets undergoing ion-beam sputtering, are based on Sigmund's
formula, which describes the spatial distribution of the energy deposited by
the ion. For small angles of incidence and amorphous or polycrystalline
materials, this description seems to be suitable, and leads to the classic BH
morphological theory [R.M. Bradley and J.M.E. Harper, J. Vac. Sci. Technol. A
6, 2390 (1988)]. Here we study the sputtering of Cu crystals by means of
numerical simulations under the binary-collision approximation. We observe
significant deviations from Sigmund's energy distribution. In particular, the
distribution that best fits our simulations has a minimum near the position
where the ion penetrates the surface, and the decay of energy deposition with
distance to ion trajectory is exponential rather than Gaussian. We provide a
modified continuum theory which takes these effects into account and explores
the implications of the modified energy distribution for the surface
morphology. In marked contrast with BH's theory, the dependence of the
sputtering yield with the angle of incidence is non-monotonous, with a maximum
for non-grazing incidence angles.Comment: 12 pages, 13 figures, RevTe
Tensor polarization of deuterons passing through matter
It is shown that the magnitude of tensor polarization of the deuteron beam,
which arises owing to the spin dichroism effect, depends appreciably on the
angular width of the detector that registers the deuterons transmitted through
the target. Even when the angular width of the detector is much smaller than
the mean square angle of multiple Coulomb scattering, the beam's tensor
polarization depends noticeably on rescattering. When the angular width of the
detector is much larger than the mean square angle of multiple Coulomb
scattering (as well as than the characteristic angle of elastic nuclear
scattering), tensor polarization is determined only by the total reaction cross
sections for deuteron-nucleus interaction, and elastic scattering processes
make no contribution to tensor polarization.Comment: 18 pages, 3 figures, to be published in IO
Bremsstrahlung and pair production processes at low energies, multi-differential cross section and polarization phenomena
Radiative electron-proton scattering is studied in peripheral kinematics,
where the scattered electron and photon move close to the direction of the
initial electron. Even in the case of unpolarized initial electron the photon
may have a definite polarization. The differential cross sections with
longitudinally or transversal polarized initial electron are calculated. The
same phenomena are considered for the production of an electron-positron pair
by the photon, where the final positron (electron) can be also polarized.
Differential distributions for the case of polarized initial photon are given.
Both cases of unscreened and completely screened atomic targets are considered.Comment: 15 pages, 6 figure
Cross section of high-energy photon splitting in the electric fields of heavy atoms
Various differential cross sections of high-energy photon splitting in the
electric fields of heavy atoms are calculated exactly in the parameter \al. The
consideration is based on the quasiclassical approach applicable for small
angles between all photon momenta. The expressions obtained are valid for
arbitrary transverse momenta of final photons . The detailed investigation of
the process is performed taking into account the effect of screening . The
exact cross section turns out to be noticeably smaller than the result obtained
in the Born approximation.Comment: 12 pages, latex, 6 figure
- …