57 research outputs found

    Executive function skills of 6–8 year olds: Brain and behavioral evidence and implications for school achievement

    Get PDF
    Academic and social success in school has been linked to children’s self-regulation. This study investigated the assessment of the executive function (EF) component of self-regulation using a low-cost, easily administered measure to determine whether scores obtained from the behavioral task would agree with those obtained using a laboratory-based neuropsychological measure of EF skills. The sample included 74 children (37 females; M = 86.2 months) who participated in two assessments of working memory and inhibitory control: Knock–Tap (NEPSY: Korkman, Kirk, & Kemp, 1998), and participated in event-related potential (ERP) testing that included the directional stroop test (DST: Davidson, Cruess, Diamond, O’Craven, and Savoy (1999)). Three main findings emerged. First, children grouped as high vs. low performing on the NEPSY Knock–Tap Task were found to perform differently on the more difficult conditions of the DST (the Incongruent and Mixed Conditions), suggesting that the Knock–Tap Task as a low-cost and easy to administer assessment of EF skills may be one way for teachers to identify students with poor inhibitory control skills. Second, children’s performance on the DST was strongly related to their ERP responses, adding to evidence that differences in behavioral performance on the DST as a measure of EF skills reflect corresponding differences in brain processing. Finally, differences in brain processing on the DST task also were found when the children were grouped based on Knock–Tap performance. Simple screening procedures can enable teachers to identify children whose distractibility, inattentiveness, or poor attention spans may interfere with classroom learning

    Brain-behavior relationships in incidental learning of non-native phonetic categories

    Get PDF
    Available online 12 September 2019.Research has implicated the left inferior frontal gyrus (LIFG) in mapping acoustic-phonetic input to sound category representations, both in native speech perception and non-native phonetic category learning. At issue is whether this sensitivity reflects access to phonetic category information per se or to explicit category labels, the latter often being required by experimental procedures. The current study employed an incidental learning paradigm designed to increase sensitivity to a difficult non-native phonetic contrast without inducing explicit awareness of the categorical nature of the stimuli. Functional MRI scans revealed frontal sensitivity to phonetic category structure both before and after learning. Additionally, individuals who succeeded most on the learning task showed the largest increases in frontal recruitment after learning. Overall, results suggest that processing novel phonetic category information entails a reliance on frontal brain regions, even in the absence of explicit category labels.This research was supported by NIH grant R01 DC013064 to EBM and NIH NIDCD Grant R01 DC006220 to SEB. The authors thank F. Sayako Earle for assistance with stimulus development; members of the Language and Brain lab for help with data collection and their feedback throughout the project; Elisa Medeiros for assistance with collection of fMRI data; Paul Taylor for assistance with neuroimaging analyses; and attendees of the 2016 Meeting of the Psychonomic Society and the 2017 Meeting of the Society for Neurobiology of Language for helpful feedback on this project. We also extend thanks to two anonymous reviewers for helpful feedback on a previous version of this manuscript

    Different activation signatures in the primary sensorimotor and higher-level regions for haptic three-dimensional curved surface exploration

    Get PDF
    Haptic object perception begins with continuous exploratory contact, and the human brain needs to accumulate sensory information continuously over time. However, it is still unclear how the primary sensorimotor cortex (PSC) interacts with these higher-level regions during haptic exploration over time. This functional magnetic resonance imaging (fMRI) study investigates time-dependent haptic object processing by examining brain activity during haptic 3D curve and roughness estimations. For this experiment, we designed sixteen haptic stimuli (4 kinds of curves x 4 varieties of roughness) for the haptic curve and roughness estimation tasks. Twenty participants were asked to move their right index and middle fingers along the surface twice and to estimate one of the two features -roughness or curvature -depending on the task instruction. We found that the brain activity in several higher-level regions (e.g., the bilateral posterior parietal cortex) linearly increased as the number of curves increased during the haptic exploration phase. Surprisingly, we found that the contralateral PSC was parametrically modulated by the number of curves only during the late exploration phase but not during the early exploration phase. In contrast, we found no similar parametric modulation activity patterns during the haptic roughness estimation task in either the contralateral PSC or in higher-level regions. Thus, our findings suggest that haptic 3D object perception is processed across the cortical hierarchy, whereas the contralateral PSC interacts with other higher-level regions across time in a manner that is dependent upon the features of the object

    Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex

    Get PDF
    When humans perceive a sensation, their brains integrate inputs from sensory receptors and process them based on their expectations. The mechanisms of this predictive coding in the human somatosensory system are not fully understood. We fill a basic gap in our understanding of the predictive processing of somatosensation by examining the layer-specific activity in sensory input and predictive feedback in the human primary somatosensory cortex (S1). We acquired submillimeter functional magnetic resonance imaging data at 7T (n = 10) during a task of perceived, predictable, and unpredictable touching sequences. We demonstrate that the sensory input from thalamic projects preferentially activates the middle layer, while the superficial and deep layers in S1 are more engaged for cortico-cortical predictive feedback input. These findings are pivotal to understanding the mechanisms of tactile prediction processing in the human somatosensory cortex

    Common neural basis of motor sequence learning and word recognition and its relation with individual differences in reading skill

    Get PDF
    To investigate the neural basis of a common statistical learning mechanism involved in motor sequence learning and decoding, we recorded brain activation from participants during a serial reaction time (SRT) task and a word reading task using functional magnetic resonance imaging. In the SRT task, a manual response was made depending on the location of a visual cue, and the order of the locations was either fixed or random. In the word reading task, visual words were passively presented. In the inferior frontal gyrus pars triangularis (IFGpTr) and the insula, differences in activation between the ordered and random condition in the SRT task and activation to printed words in the word reading task were correlated with the participants' decoding ability. We speculate that extraction of statistically predictable patterns in the IFGpTr and insula contributes to both motor sequence learning and orthographic learning, and therefore predicts individual differences in decoding skill

    Neurochemistry Predicts Convergence of Written and Spoken Language: A Proton Magnetic Resonance Spectroscopy Study of Cross-Modal Language Integration

    Get PDF
    Recent studies have provided evidence of associations between neurochemistry and reading (dis)ability (Pugh et al., 2014). Based on a long history of studies indicating that fluent reading entails the automatic convergence of the written and spoken forms of language and our recently proposed Neural Noise Hypothesis (Hancock et al., 2017), we hypothesized that individual differences in cross-modal integration would mediate, at least partially, the relationship between neurochemical concentrations and reading. Cross-modal integration was measured in 231 children using a two-alternative forced choice cross-modal matching task with three language conditions (letters, words, and pseudowords) and two levels of difficulty within each language condition. Neurometabolite concentrations of Choline (Cho), Glutamate (Glu), gamma-Aminobutyric (GABA), and N- acetyl-aspartate (NAA) were then measured in a subset of this sample (n = 70) with Magnetic Resonance Spectroscopy (MRS). A structural equation mediation model revealed that the effect of cross-modal word matching mediated the relationship between increased Glu (which has been proposed to be an index of neural noise) and poorer reading ability. In addition, the effect of cross-modal word matching fully mediated a relationship between increased Cho and poorer reading ability. Multilevel mixed effects models confirmed that lower Cho predicted faster cross-modal matching reaction time, specifically in the hard word condition. These Cho findings are consistent with previous work in both adults and children showing a negative association between Cho and reading ability. We also found two novel neurochemical relationships. Specifically, lower GABA and higher NAA predicted faster cross-modal matching reaction times. We interpret these results within a biochemical framework in which the ability of neurochemistry to predict reading ability may at least partially be explained by cross-modal integration

    Layer-dependent activity in human prefrontal cortex during working memory

    No full text
    Working memory involves storing and/or manipulating previously encoded information over a short-term delay period, which is typically followed by a behavioral response based on the remembered information. Although working memory tasks often engage dorsolateral prefrontal cortex, few studies have investigated whether their subprocesses are localized to different cortical depths in this region, and none have done so in humans. Here we use high-resolution functional MRI to interrogate the layer specificity of neural activity during different periods of a delayed-response task in dorsolateral prefrontal cortex. We detect activity time courses that follow the hypothesized patterns: namely, superficial layers are preferentially active during the delay period, specifically in trials requiring manipulation (rather than mere maintenance) of information held in working memory, and deeper layers are preferentially active during the response. Results demonstrate that layer-specific functional MRI can be used in higher-order brain regions to noninvasively map cognitive processing in humans

    Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging

    No full text
    Two ongoing movements in human cognitive neuroscience have researchers shifting focus from group-level inferences to characterizing single subjects, and complementing tightly controlled tasks with rich, dynamic paradigms such as movies and stories. Yet relatively little work combines these two, perhaps because traditional analysis approaches for naturalistic imaging data are geared toward detecting shared responses rather than between-subject variability. Here, we review recent work using naturalistic stimuli to study individual differences, and advance a framework for detecting structure in idiosyncratic patterns of brain activity, or “idiosynchrony”. Specifically, we outline the emerging technique of inter-subject representational similarity analysis (IS-RSA), including its theoretical motivation and an empirical demonstration of how it recovers brain-behavior relationships during movie watching using data from the Human Connectome Project. We also consider how stimulus choice may affect the individual signal and discuss areas for future research. We argue that naturalistic neuroimaging paradigms have the potential to reveal meaningful individual differences above and beyond those observed during traditional tasks or at rest

    Idiosynchrony

    No full text
    Two ongoing movements in human cognitive neuroscience have researchers shifting focus from group-level inferences to characterizing single subjects, and complementing tightly controlled tasks with rich, dynamic paradigms such as movies and stories. Yet relatively little work combines these two, perhaps because traditional analysis approaches for naturalistic imaging data are geared toward detecting shared responses rather than between-subject variability. Here, we review recent work using naturalistic stimuli to study individual differences, and advance a framework for detecting structure in idiosyncratic patterns of brain activity, or “idiosynchrony”. Specifically, we outline the emerging technique of inter-subject representational similarity analysis (IS-RSA), including its theoretical motivation and an empirical demonstration of how it recovers brain-behavior relationships during movie watching using data from the Human Connectome Project. We also consider how stimulus choice may affect the individual signal and discuss areas for future research. We argue that naturalistic neuroimaging paradigms have the potential to reveal meaningful individual differences above and beyond those observed during traditional tasks or at rest.Peer reviewe

    Tracking second language immersion across time: Evidence from a bi-directional longitudinal cross-linguistic fMRI study

    Get PDF
    Available online 19 February 2021Parallel cohorts of Hebrew speakers learning English in the U.S., and American-English speakers learning Hebrew in Israel were tracked over the course of two years of immersion in their L2. We utilised a functional MRI semantic judgement task with print and speech tokens, as well as a battery of linguistic and cognitive behavioural measures prior to and after immersion, to track changes in both L1 and L2 processing. fMRI activation for print tokens produced a similar network of activation in both English and Hebrew, irrespective of L1 or L2 status. Significant convergence of print and speech processing was also observed in both languages across a network of left-hemisphere regions joint for both L1 and L2. Despite significant increases in behavioural measures of L2 proficiency, only a few signs of longitudinal change in L2 brain activation were found. In contrast, L1 showed widespread differences in processing across time, suggesting that the neurobiological footprint of reading is dynamic and plastic even in adults, with L2 immersion impacting L1 processing. Print/speech convergence showed little longitudinal change, suggesting that it is a stable marker of the differences in L1 and L2 processing across L2 proficiency.This paper was supported by the ERC Advanced grant (project 692502, L2STAT), the Israel Science Foundation (Grant 217/14), and by the National Institute of Child Health and Human Development at the National Institutes of Health (RO1 HD 067364)
    • …
    corecore