11 research outputs found

    Clinopyroxene diversity and magma plumbing system processes in an accreted Pacific ocean island, Panama

    Get PDF
    Characterising equilibrium and disequilibrium crystal-melt processes is critical in determining the extent of magma mixing and crystallization conditions in the roots of volcanoes. However, these processes remain poorly investigated in most Pacific intraplate ocean settings that are difficult to access and study. To help address this issue, we investigated crystallization conditions of clinopyroxene phenocrysts in an accreted Palaeogene oceanic island in Panama. Petrographic and geochemical observations, petrological modelling of major and trace elements, and liquid-mineral multicomponent equilibrium tests were carried out using basalts, picrites, and hawaiites of the transitional tholeiitic shield to alkaline post-shield volcanic stages of the island. Five types of clinopyroxene crystals were identified, including (1) microphenocrysts with micron-scale oscillatory zoning, (2) primitive, yet resorbed picrite-hosted phenocrysts, (3) chemically homogeneous, anhedral crystals found in the remaining basalts, (4) Ti–rich euhedral hawaiite-hosted phenocrysts, and (5) evolved sector-zoned phenocrysts. Liquid-clinopyroxene multicomponent equilibrium tests in combination with textural analysis show that ~ 74% of the studied clinopyroxenes are in possible major element equilibrium with one of the available whole rock magma compositions, of which only 21% are equilibrated with their carrier liquid. To deconvolute clinopyroxene-melt pairings and determine plumbing system conditions, we combine rhyolite-MELTS modelling, geothermobarometry, and major- and trace-element equilibrium evaluations, limiting crystallization conditions to crustal levels (< 23 km depth). No migration of magmatic reservoirs to deeper levels is observed during the shield- to post-shield transition. These results suggest the occurrence of an extensive crystal mush system during the late shield to post-shield volcanic stages of this intraplate volcanic system, with both primitive and evolved crystallization domains sampled during eruptions

    Plumbing System Architecture and Differentiation Processes of the Nyiragongo Volcano, DR Congo

    Get PDF
    The Nyiragongo volcano is one of the most alkali-rich volcanic centres on the planet (Na2O + K2O generally >10 wt.%, agpaitic index up to 1.34), characterized by a semi-permanently active lava lake which hosts silica-undersaturated (SiO2 < 40 wt.%), low viscosity lavas. To improve our understanding of this unique magmatic system, we present a set of 291 samples, acquired during new field excursions between 2017 and 2021. The major and trace element composition of all samples was measured, revealing a lithological range extending from primitive picrites (Mg# 82) erupted from parasitic cones to a variety of highly evolved nephelinites, leucitites, and melilitites erupted from the main edifice as recently as 2002, 2016, and 2021. We measured major and trace element compositions from the full spectrum of minerals present in all sampled lithologies. From these we calculated that the main magma reservoirs feeding Nyiragongo are at approximately 9-15 and 21-33 km depth, in agreement with recent seismic observations. Fractional crystallization modelling using observed mineral compositions and proportions was performed to quantitatively link the lithologies to specific residual liquid fractions assuming evolution from an olivine-melilite parental melt. Our modelling indicates that fractionation and cumulate formation in deep chambers reduces the remaining melt fraction to ∼60%, after which melts are injected into upper, liquid dominated magma chambers where fractionation and accumulation of clinopyroxene, melilite, and feldspathoids dominates. Characterisation of mineral textures and geochemistry reveals high crystal mobility in a repeatedly recharging plumbing system split between liquid-dominated, evolved magma chambers and more solid-dominated, primitive mushes, decreasing in liquid fraction with depth

    Clinopyroxene diversity and magma plumbing system processes in an accreted Pacific ocean island, Panama

    Get PDF
    Characterising equilibrium and disequilibrium crystal-melt processes is critical in determining the extent of magma mixing and crystallization conditions in the roots of volcanoes. However, these processes remain poorly investigated in most Pacific intraplate ocean settings that are difficult to access and study. To help address this issue, we investigated crystallization conditions of clinopyroxene phenocrysts in an accreted Palaeogene oceanic island in Panama. Petrographic and geochemical observations, petrological modelling of major and trace elements, and liquid-mineral multicomponent equilibrium tests were carried out using basalts, picrites, and hawaiites of the transitional tholeiitic shield to alkaline post-shield volcanic stages of the island. Five types of clinopyroxene crystals were identified, including (1) microphenocrysts with micron-scale oscillatory zoning, (2) primitive, yet resorbed picrite-hosted phenocrysts, (3) chemically homogeneous, anhedral crystals found in the remaining basalts, (4) Ti–rich euhedral hawaiite-hosted phenocrysts, and (5) evolved sector-zoned phenocrysts. Liquid-clinopyroxene multicomponent equilibrium tests in combination with textural analysis show that ~ 74% of the studied clinopyroxenes are in possible major element equilibrium with one of the available whole rock magma compositions, of which only 21% are equilibrated with their carrier liquid. To deconvolute clinopyroxene-melt pairings and determine plumbing system conditions, we combine rhyolite-MELTS modelling, geothermobarometry, and major- and trace-element equilibrium evaluations, limiting crystallization conditions to crustal levels (< 23 km depth). No migration of magmatic reservoirs to deeper levels is observed during the shield- to post-shield transition. These results suggest the occurrence of an extensive crystal mush system during the late shield to post-shield volcanic stages of this intraplate volcanic system, with both primitive and evolved crystallization domains sampled during eruptions

    Clinopyroxene diversity and magma plumbing system processes in an accreted Pacific ocean island, Panama

    No full text
    Characterising equilibrium and disequilibrium crystal-melt processes is critical in determining the extent of magma mixing and crystallization conditions in the roots of volcanoes. However, these processes remain poorly investigated in most Pacific intraplate ocean settings that are difficult to access and study. To help address this issue, we investigated crystallization conditions of clinopyroxene phenocrysts in an accreted Palaeogene oceanic island in Panama. Petrographic and geochemical observations, petrological modelling of major and trace elements, and liquid-mineral multicomponent equilibrium tests were carried out using basalts, picrites, and hawaiites of the transitional tholeiitic shield to alkaline post-shield volcanic stages of the island. Five types of clinopyroxene crystals were identified, including (1) microphenocrysts with micron-scale oscillatory zoning, (2) primitive, yet resorbed picrite-hosted phenocrysts, (3) chemically homogeneous, anhedral crystals found in the remaining basalts, (4) Ti–rich euhedral hawaiite-hosted phenocrysts, and (5) evolved sector-zoned phenocrysts. Liquid-clinopyroxene multicomponent equilibrium tests in combination with textural analysis show that ~ 74% of the studied clinopyroxenes are in possible major element equilibrium with one of the available whole rock magma compositions, of which only 21% are equilibrated with their carrier liquid. To deconvolute clinopyroxene-melt pairings and determine plumbing system conditions, we combine rhyolite-MELTS modelling, geothermobarometry, and major- and trace-element equilibrium evaluations, limiting crystallization conditions to crustal levels (< 23 km depth). No migration of magmatic reservoirs to deeper levels is observed during the shield- to post-shield transition. These results suggest the occurrence of an extensive crystal mush system during the late shield to post-shield volcanic stages of this intraplate volcanic system, with both primitive and evolved crystallization domains sampled during eruptions
    corecore