23 research outputs found

    Modelling of discharges from baltic sea shipping

    Get PDF
    This paper describes the new developments of the Ship Traffic Emission Assessment Model (STEAM) which enable the modelling of pollutant discharges to water from ships. These include nutrients from black/grey water discharges as well as from food waste. Further, the modelling of contaminants in ballast, black, grey and scrubber water, bilge discharges, and stern tube oil leaks are also described as well as releases of contaminants from antifouling paints. Each of the discharges is regulated by different sections of the IMO MARPOL convention, and emission patterns of different pollution releases vary significantly. The discharge patterns and total amounts for the year 2012 in the Baltic Sea area are reported and open-loop SOx scrubbing effluent was found to be the second-largest pollutant stream by volume. The scrubber discharges have increased significantly in recent years, and their environmental impacts need to be investigated in detail

    Advances in air quality research – current and emerging challenges

    Get PDF
    © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License. https://creativecommons.org/licenses/by/4.0/This review provides a community’s perspective on air quality research focusing mainly on developmentsover the past decade. The article provides perspectives on current and future challenges as well asresearch needs for selected key topics. While this paper is not an exhaustive review of all research areas in thefield of air quality, we have selected key topics that we feel are important from air quality research and policy perspectives. After providing a short historical overview, this review focuses on improvements in characterizingsources and emissions of air pollution, new air quality observations and instrumentation, advances in air qualityprediction and forecasting, understanding interactions of air quality with meteorology and climate, exposure andhealth assessment, and air quality management and policy. In conducting the review, specific objectives were(i) to address current developments that push the boundaries of air quality research forward, (ii) to highlightthe emerging prominent gaps of knowledge in air quality research, and (iii) to make recommendations to guidethe direction for future research within the wider community. This review also identifies areas of particular importancefor air quality policy. The original concept of this review was borne at the International Conferenceon Air Quality 2020 (held online due to the COVID 19 restrictions during 18–26 May 2020), but the articleincorporates a wider landscape of research literature within the field of air quality science. On air pollutionemissions the review highlights, in particular, the need to reduce uncertainties in emissions from diffuse sources,particulate matter chemical components, shipping emissions, and the importance of considering both indoor andoutdoor sources. There is a growing need to have integrated air pollution and related observations from bothground-based and remote sensing instruments, including in particular those on satellites. The research shouldalso capitalize on the growing area of low-cost sensors, while ensuring a quality of the measurements which areregulated by guidelines. Connecting various physical scales in air quality modelling is still a continual issue,with cities being affected by air pollution gradients at local scales and by long-range transport. At the same time,one should allow for the impacts from climate change on a longer timescale. Earth system modelling offers considerablepotential by providing a consistent framework for treating scales and processes, especially where thereare significant feedbacks, such as those related to aerosols, chemistry, and meteorology. Assessment of exposureto air pollution should consider the impacts of both indoor and outdoor emissions, as well as application of moresophisticated, dynamic modelling approaches to predict concentrations of air pollutants in both environments.With particulate matter being one of the most important pollutants for health, research is indicating the urgentneed to understand, in particular, the role of particle number and chemical components in terms of health impact,which in turn requires improved emission inventories and models for predicting high-resolution distributions ofthese metrics over cities. The review also examines how air pollution management needs to adapt to the abovementionednew challenges and briefly considers the implications from the COVID-19 pandemic for air quality.Finally, we provide recommendations for air quality research and support for policy.Peer reviewe

    Advances in air quality research – current and emerging challenges

    Get PDF
    This review provides a community\u27s perspective on air quality research focusing mainly on developments over the past decade. The article provides perspectives on current and future challenges as well as research needs for selected key topics. While this paper is not an exhaustive review of all research areas in the field of air quality, we have selected key topics that we feel are important from air quality research and policy perspectives. After providing a short historical overview, this review focuses on improvements in characterizing sources and emissions of air pollution, new air quality observations and instrumentation, advances in air quality prediction and forecasting, understanding interactions of air quality with meteorology and climate, exposure and health assessment, and air quality management and policy. In conducting the review, specific objectives were (i) to address current developments that push the boundaries of air quality research forward, (ii) to highlight the emerging prominent gaps of knowledge in air quality research, and (iii) to make recommendations to guide the direction for future research within the wider community. This review also identifies areas of particular importance for air quality policy. The original concept of this review was borne at the International Conference on Air Quality 2020 (held online due to the COVID 19 restrictions during 18–26 May 2020), but the article incorporates a wider landscape of research literature within the field of air quality science. On air pollution emissions the review highlights, in particular, the need to reduce uncertainties in emissions from diffuse sources, particulate matter chemical components, shipping emissions, and the importance of considering both indoor and outdoor sources. There is a growing need to have integrated air pollution and related observations from both ground-based and remote sensing instruments, including in particular those on satellites. The research should also capitalize on the growing area of low-cost sensors, while ensuring a quality of the measurements which are regulated by guidelines. Connecting various physical scales in air quality modelling is still a continual issue, with cities being affected by air pollution gradients at local scales and by long-range transport. At the same time, one should allow for the impacts from climate change on a longer timescale. Earth system modelling offers considerable potential by providing a consistent framework for treating scales and processes, especially where there are significant feedbacks, such as those related to aerosols, chemistry, and meteorology. Assessment of exposure to air pollution should consider the impacts of both indoor and outdoor emissions, as well as application of more sophisticated, dynamic modelling approaches to predict concentrations of air pollutants in both environments. With particulate matter being one of the most important pollutants for health, research is indicating the urgent need to understand, in particular, the role of particle number and chemical components in terms of health impact, which in turn requires improved emission inventories and models for predicting high-resolution distributions of these metrics over cities. The review also examines how air pollution management needs to adapt to the above-mentioned new challenges and briefly considers the implications from the COVID-19 pandemic for air quality. Finally, we provide recommendations for air quality research and support for policy

    KAZAKH-RUSSIAN DERIVATIONAL SYNCRETISMIN THE LANGUAGE CONSCIOUSNESS OF THE KAZAKHS

    No full text
    The article analyzes the experimental results obtained during free psycholinguistic associative experiment (SAE) carried out in 2012-2014. with a massive (over 1,000 informants) audience students of the Kazakh branch of the universities on the territory of South Kazakhstan region (Shymkent city) and reflected in the Kazakh associative dictionary; discusses and analyzes examples of Kazakh-Russian derivational syncretism in morphological and lexico-semantic system of the Kazakh language and their role in the speech environment of today’s youth - representatives of the titular nation of Kazakhstan. This article continues to develop the idea, previously expressed in works of scientists of the Russian psycho-linguistic schools - A.A. Leontiev, E.F. Tarasov, N.V. Ufimtseva, V.P. Sinyachkin and continued Kazakhstan psycholinguistami Z.K. Akhmetzhanova, NV. Dmitryuk, A. Shajahmetova, D.A. Moldalievа etc.The work attempts to show the existence of a number of problems in the search for ethnic identity related to the image transformation of consciousness in post-socialist and the modern period

    Effekten av sjöfartens utsläpp av svavel och kväve på överskridande av kritisk belastning för försurning och för övergödning i Sverige

    Get PDF
    Denna rapport redovisar resultat från projektet ”Effekten av sjöfartens utsläpp av svavel och kväve på överskridande av kritisk belastning för försurning och för övergödning i Sverige”, Naturvårdsverkets ärendenummer NV-07751-17. Projektet bygger på ett antal utsläppscenarier med fokus på olika sjöfartsemissionsscenarier. Dessa scenarier har tagits fram inom BONUS SHEBA (Sustainable shipping and Environment of the Baltic Sea region) projektet för åren 2012 och 2040. Rapporten visar hur överskridandet av kritisk belastning för försurning och eutrofiering i Sverige påverkas av sjöfarten

    A multimodel evaluation of the potential impact of shipping on particle species in the Mediterranean Sea

    Get PDF
    Shipping contributes significantly to air pollutant emissions and atmospheric particulate matter (PM) concentrations. At the same time, worldwide maritime transport volumes are expected to continue to rise in the future. The Mediterranean Sea is a major short-sea shipping route within Europe and is the main shipping route between Europe and East Asia. As a result, it is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study is a part of the EU Horizon 2020 project SCIPPER (Shipping Contributions to Inland Pollution – Push for the Enforcement of Regulations), which intends to investigate how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. To demonstrate the impact of ships on relatively large scales, the potential shipping impacts on various air pollutants can be simulated with chemical transport models. To determine the formation, transport, chemical transformation, and fate of particulate matter &lt; 2.5 µm (PM2.5) in the Mediterranean Sea in 2015, five different regional chemical transport models (CAMx – Comprehensive Air Quality Model with Extensions, CHIMERE, CMAQ – Community Multiscale Air Quality model, EMEP – European Monitoring and Evaluation Programme model, and LOTOS-EUROS) were applied. Furthermore, PM2.5 precursors (ammonia (NH3), sulfur dioxide (SO2), nitric acid (HNO3)) and inorganic particle species (sulfate (SO42-), ammonia (NH4+), nitrate (NO3-)) were studied, as they are important for explaining differences among the models. STEAM (see “List of abbreviations” in Appendix A) version 3.3.0 was used to compute shipping emissions, and the CAMS-REG version 2.2.1 dataset was used to calculate land-based emissions for an area encompassing the Mediterranean Sea at a resolution of 12 × 12 km2 (or 0.1∘ × 0.1∘). For additional input, like meteorological fields and boundary conditions, all models utilized their regular configuration. The zero-out approach was used to quantify the potential impact of ship emissions on PM2.5 concentrations. The model results were compared with observed background data from monitoring sites. Four of the five models underestimated the actual measured PM2.5 concentrations. These underestimations are linked to model-specific mechanisms or underpredictions of particle precursors. The potential impact of ships on the PM2.5 concentration is between 15 % and 25 % at the main shipping routes. Regarding particle species, SO42- is the main contributor to the absolute ship-related PM2.5 and to total PM2.5 concentrations. In the ship-related PM2.5, a higher share of inorganic particle species can be found when compared with the total PM2.5. The seasonal variabilities in particle species show that NO3- is higher in winter and spring, while the NH4+ concentrations displayed no clear seasonal pattern in any models. In most cases with high concentrations of both NH4+ and NO3-, lower SO42- concentrations are simulated. Differences among the simulated particle species distributions might be traced back to the aerosol size distribution and how models distribute emissions between the coarse and fine modes (PM2.5 and PM10). The seasonality of wet deposition follows the seasonality of the precipitation, showing that precipitation predominates wet deposition.</p

    Transport impacts on atmosphere and climate: shipping

    No full text
    Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO2, the climate response from sulphate is of the order decades while that of CO2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO2 and cooling by sulphate and nitrogen oxides

    Photochemical smog in China : scientific challenges and implications for air-quality policies

    No full text
    2016-2017 > Academic research: refereed > Publication in refereed journal201806 bcmaVersion of RecordPublishe

    Resonance-enhanced detection of metals in aerosols using single-particle mass spectrometry.

    No full text
    We describe resonance effects in laser desorption-ionization (LDI) of particles that substantially increase the sensitivity and selectivity to metals in single-particle mass spectrometry (SPMS). Within the proposed scenario, resonant light absorption by ablated metal atoms increases their ionization rate within a single laser pulse. By choosing the appropriate laser wavelength, the key micronutrients Fe, Zn and Mn can be detected on individual aerosol particles with considerably improved efficiency. These ionization enhancements for metals apply to natural dust and anthropogenic aerosols, both important sources of bioavailable metals to marine environments. Transferring the results into applications, we show that the spectrum of our KrF-excimer laser is in resonance with a major absorption line of iron atoms. To estimate the impact of resonant LDI on the metal detection efficiency in SPMS applications, we performed a field experiment on ambient air with two alternately firing excimer lasers of different wavelengths. Herein, resonant LDI with the KrF-excimer laser (248.3 nm) revealed iron signatures for many more particles of the same aerosol ensemble compared to the more common ArF-excimer laser line of 193.3 nm (nonresonant LDI of iron). Many of the particles that showed iron contents upon resonant LDI were mixtures of sea salt and organic carbon. For nonresonant ionization, iron was exclusively detected in particles with a soot contribution. This suggests that resonant LDI allows a more universal and secure metal detection in SPMS. Moreover, our field study indicates relevant atmospheric iron transport by mixed organic particles, a pathway that might be underestimated in SPMS measurements based on nonresonant LDI. Our findings show a way to improve the detection and source attribution capabilities of SPMS for particle-bound metals, a health-relevant aerosol component and an important source of micronutrients to the surface oceans affecting marine primary productivity
    corecore