47 research outputs found

    Recent visible light and metal free strategies in [2+2] and [4+2] photocycloadditions

    Full text link
    When aiming to synthesize molecules with elevated molecular complexity starting from relatively simple starting materials, photochemical transformations represent an open avenue to circumvent analogous multistep procedures. Specifically, light-mediated cycloadditions remain as powerful tools to generate new bonds begotten from non-very intuitive disconnections, that alternative thermal protocols would not offer. In response to the current trend in both industrial and academic research pointing towards green and sustainable processes, several strategies that meet these requirements are currently available in the literature. This Minireview summarizes [2+2] and [4+2] photocycloadditions that do not require the use of metal photocatalysts by means of alternative strategies. It is segmented according to the cycloaddition type in order to give the reader a friendly approach and we primarily focus on the most recent developments in the field carried out using visible light, a general overview of the mechanism in each case is offered as wellFinancial support was provided by the European Research Council (ERC-CoG, Contract Number: 647550), the Spanish Government (RTI2018-095038-B-I00), the ‘Comunidad de Madrid’ and European Structural Funds (S2018/NMT-4367). R. I. R thanks Fundación Carolina for a graduate fellowshi

    Advanced flavin catalysts elaborated with polymers

    Get PDF
    A variety of biological redox reactions are mediated by flavoenzymes due to the unique redox activity of isoalloxazine ring systems, which are found in flavin cofactors. In the field of synthetic organic chemistry, the term “flavin” is generally used for not only isoalloxazines but also related molecules including their isomers and some analogues, and those having catalytic activity are called flavin catalyst. Flavin catalysts are typically metal-free, and their catalytic activity can be readily accessed using mild terminal oxidants such as H2O2 and O2; therefore, redox reactions with these compounds have great promise as alternatives to reactions with conventional metal catalysts for the sustainable production of important chemicals. We recently became interested in using polymers for the development of flavin catalysts, especially to improve their practicality and advance the field of catalysis. Here, we summarize our recent research on such flavin-polymer collaborations including the development of facile preparation methods for flavin catalysts using polymers, readily reusable polymer-supported flavin catalysts, and flavin-peptide-polymer hybrids that can catalyze the first flavoenzyme-mimetic aerobic oxygenation reactions

    Photophysical properties of alloxazine derivatives with extended aromaticity – Potential redox-sensitive fluorescent probe

    No full text
    The spectral and photophysical properties of two four-ring alloxazine derivatives, naphtho[2,3-g] pteridine-2,4(1H,3H)-dione (1a) and 1,3-dimethylnaphtho[2,3-g]pteridine-2,4(1H,3H)-dione, (1b) were studied. The propensity of 1a for excited-state proton transfer reactions in the presence of acetic acid as a catalyst was also studied, showing no signature of the reaction occurring. In addition, quenching of 1a fluorescence by acetic acid was investigated. Singlet and triplet states and spectral data for 1a and 1b were calculated using density functional theory TD-DFT at B3LYP/6-31G(d) and UB3LYP levels. Finally, fluorescence lifetime imaging microscopy (FLIM) using 1a and 1b as fluorescence probes was applied to in vitro human red blood cells (RBCs) with and without tert-butyl hydroperoxide (TB) as an oxidising agent. To evaluate and compare the effects of 1a and 1b on the redox properties of RBCs, the fluorescence lifetime, amplitude and fractional intensities were calculated, and phasor plot analysis was performed. The results obtained show the appearance of a new proximal cluster in the phasor fingerprint of RBCs in the presence of 1b and a shorter fluorescence lifetime of RBCs in the presence of 1a.info:eu-repo/semantics/publishedVersio

    Nonhydrolysable Analogues of (p)ppGpp and (p)ppApp Alarmone Nucleotides as Novel Molecular Tools

    No full text
    While alarmone nucleotides guanosine-3',5'-bisdiphosphate (ppGpp) and guanosine-5'-triphosphate-3'-diphosphate (pppGpp) are archetypical bacterial second messengers, their adenosine analogues ppApp (adenosine-3',5'-bisdiphosphate) and pppApp (adenosine-5'-triphosphate-3'-diphosphate) are toxic effectors that abrogate bacterial growth. The alarmones are both synthesized and degraded by the members of the RelA-SpoT Homologue (RSH) enzyme family. Because of the chemical and enzymatic liability of (p)ppGpp and (p)ppApp, these alarmones are prone to degradation during structural biology experiments. To overcome this limitation, we have established an efficient and straightforward procedure for synthesizing nonhydrolysable (p)ppNuNpp analogues starting from 3'-azido-3'-deoxyribonucleotides as key intermediates. To demonstrate the utility of (p)ppGNpp as a molecular tool, we show that (i) as an HD substrate mimic, ppGNpp competes with ppGpp to inhibit the enzymatic activity of human MESH1 Small Alarmone Hyrolase, SAH; and (ii) mimicking the allosteric effects of (p)ppGpp, (p)ppGNpp acts as a positive regulator of the synthetase activity of long ribosome-associated RSHs Rel and RelA. Finally, by solving the structure of the N-terminal domain region (NTD) of T. thermophilus Rel complexed with pppGNpp, we show that as an HD substrate mimic, the analogue serves as a bona fide orthosteric regulator that promotes the same intra-NTD structural rearrangements as the native substrate
    corecore