384 research outputs found

    UPMASK: unsupervised photometric membership assignment in stellar clusters

    Full text link
    We develop a method for membership assignment in stellar clusters using only photometry and positions. The method, UPMASK, is aimed to be unsupervised, data driven, model free, and to rely on as few assumptions as possible. It is based on an iterative process, principal component analysis, clustering algorithm, and kernel density estimations. Moreover, it is able to take into account arbitrary error models. An implementation in R was tested on simulated clusters that covered a broad range of ages, masses, distances, reddenings, and also on real data of cluster fields. Running UPMASK on simulations showed that it effectively separates cluster and field populations. The overall spatial structure and distribution of cluster member stars in the colour-magnitude diagram were recovered under a broad variety of conditions. For a set of 360 simulations, the resulting true positive rates (a measurement of purity) and member recovery rates (a measurement of completeness) at the 90% membership probability level reached high values for a range of open cluster ages (107.1109.510^{7.1}-10^{9.5} yr), initial masses (0.510×1030.5-10\times10^3M_{\sun}) and heliocentric distances (0.54.00.5-4.0 kpc). UPMASK was also tested on real data from the fields of the open cluster Haffner~16 and of the closely projected clusters Haffner~10 and Czernik~29. These tests showed that even for moderate variable extinction and cluster superposition, the method yielded useful cluster membership probabilities and provided some insight into their stellar contents. The UPMASK implementation will be available at the CRAN archive.Comment: 12 pages, 13 figures, accepted for publication in Astronomy and Astrophysic

    NGC 2401: A template of the Norma-Cygnus Arm's young population in the Third Galactic Quadrant

    Full text link
    Based on a deep optical CCD (UBV(RI)_C) photometric survey and on the Two-Micron All-Sky-Survey (2MASS) data we derived the main parameters of the open cluster NGC 2401. We found this cluster is placed at 6.3 ±\pm 0.5 kpc (V_O - M_V = 14.0 \pm 0.2) from the Sun and is 25 Myr old, what allows us to identify NGC 2401 as a member of the young population belonging to the innermost side of the extension of the Norma-Cygnus spiral--arm in the Third Galactic Quadrant. A spectroscopic study of the emission star LSS 440 that lies in the cluster area revealed it is a B0Ve star; however, we could not confirm it is a cluster member. We also constructed the cluster luminosity function (LF) down to V22V \sim 22 and the cluster initial mass function (IMF) for all stars with masses above M \sim 1-2 M_{\sun}. It was found that the slope of the cluster IMF is x1.8±0.2x \approx 1.8 \pm 0.2. The presence of a probable PMS star population associated to the cluster is weakly revealed.Comment: 10 paginas, 11 eps figures, accepted for publication in MNRA

    Spiral structure of the Third Galactic Quadrant and the solution to the Canis Major debate

    Get PDF
    With the discovery of the Sagittarius dwarf spheroidal (Ibata et al. 1994), a galaxy caught in the process of merging with the Milky Way, the hunt for other such accretion events has become a very active field of astrophysical research. The identification of a stellar ring-like structure in Monoceros, spanning more than 100 degrees (Newberg et al. 2002), and the detection of an overdensity of stars in the direction of the constellation of Canis Major (CMa, Martin et al. 2004), apparently associated to the ring, has led to the widespread belief that a second galaxy being cannibalised by the Milky Way had been found. In this scenario, the overdensity would be the remaining core of the disrupted galaxy and the ring would be the tidal debris left behind. However, unlike the Sagittarius dwarf, which is well below the Galactic plane and whose orbit, and thus tidal tail, is nearly perpendicular to the plane of the Milky Way, the putative CMa galaxy and ring are nearly co-planar with the Galactic disk. This severely complicates the interpretation of observations. In this letter, we show that our new description of the Milky Way leads to a completely different picture. We argue that the Norma-Cygnus spiral arm defines a distant stellar ring crossing Monoceros and the overdensity is simply a projection effect of looking along the nearby local arm. Our perspective sheds new light on a very poorly known region, the third Galactic quadrant (3GQ), where CMa is located.Comment: 5 pages, 2 figures. Quality of Fig 1 has been degraded to make it smaller. Original fig. available on request. accepted for publication in MNRAS letter

    Open clusters in the Third Galactic Quadrant. II. The intermediate age open clusters NGC 2425 and NGC 2635

    Full text link
    We analyse CCD broad band (UBV(RI)c) photometric data obtained in the fields of the poorly studied open clusters NGC 2425 and NGC 2635. Both clusters are found to be of intermediate age thus increasing the population of open clusters known to be of the age of, or older than, the Hyades. More explicitly, we find that NGC 2425 is a 2.2 Gyr old cluster, probably of solar metallicity, located at 3.5 kpc from the Sun. NGC 2635 is a Hyades age (600 Myr) cluster located at a distance of 4.0 kpc from the Sun. Its Colour Magnitude Diagram reveals that it is extremely metal poor for its age and position, thus making it a very interesting object in the context of Galactic Disk chemical evolution models.Comment: 10 pages, 13 figures. Figure quality has been quiet degraded. Accepted by A&

    The edge of the young Galactic disc

    Get PDF
    In this work we report and discuss the detection of two distant diffuse stellar groups in the third Galactic quadrant. They are composed of young stars, with spectral types ranging from late O to late B, and lie at galactocentric distances between 15 and 20 kpc. These groups are located in the area of two cataloged open clusters (VdB-Hagen~04 and Ruprecht~30), projected towards the Vela-Puppis constellations, and within the core of the Canis Major over-density. Their reddening and distance has been estimated analyzing their color-color and color-magnitude diagrams, derived from deep UBVUBV photometry. The existence of young star aggregates at such extreme distances from the Galactic center challenges the commonly accepted scenario in which the Galactic disc has a sharp cut-off at about 14 kpc from the Galactic center, and indicates that it extends to much greater distances (as also supported by recent detection of CO molecular complexes well beyond this distance). While the groups we find in the area of Ruprecht~30 are compatible with the Orion and Norma-Cygnus spiral arms, respectively, the distant group we identify in the region of VdB-Hagen~4 lies in the external regions of the Norma-Cygnus arm, at a galactocentric distance (\sim20 kpc) where no young stars had been detected so far in the optical.Comment: 45 pages, 11 eps figure, accepted for publication in the Astrophysical Journa

    Blue Straggler Stars in Galactic Open Clusters and the effect of field star contamination

    Get PDF
    We investigate the distribution of Blue Straggler stars in the field of three open star clusters. The main purpose is to highlight the crucial role played by general Galactic disk fore-/back-ground field stars, which are often located in the same region of the Color Magnitude Diagram as Blue Straggler stars. We analyze photometry taken from the literature of 3 open clusters of intermediate/old age rich in Blue Straggler stars, and which are projected in the direction of the Perseus arm, and study their spatial distribution and the Color Magnitude Diagram. As expected, we find that a large portion of the Blue Straggler population in these clusters are simply young field stars belonging to the spiral arm. This result has important consequences on the theories of the formation and statistics of Blue Straggler stars in different population environments: open clusters, globular clusters or dwarf galaxies. As previously emphasized by many authors, a detailed membership analysis is mandatory before comparing the Blue Straggler population in star clusters against theoretical models. Moreover, these sequences of young field stars (blue plumes) are potentially powerful tracers of Galactic structure which require further consideration.Comment: 11 pages, 4 figurs, in press as Research Note in A&

    The intermediate-age open clusters Ruprecht 61, Czernik 32, NGC 2225 and NGC 2262

    Full text link
    We present the first BVIBVI CCD photometry to V=22.0V=22.0 of 4 fields centered on the region of the southern Galactic star clusters Ruprecht~61, Czernik~32, NGC 2225 and NGC 2262 and of 4 displaced control fields. These clusters were never studied before, and we provide for the first time estimates of their fundamental parameters, namely radial extent, age, distance and reddening. We find that the four clusters are all of intermediate age (around 1 Gyr), close to the Sun and possess lower than solar metal abundance.Comment: 10 pages, 14 figures, in press in MNRA

    NGC 2362: a Template for Early Stellar Evolution

    Get PDF
    We present UBVRI photometry for the young open cluster NGC 2362. From analysis of the appropriate color-color and color-magnitude diagrams we derive the fundamental parameters of the NGC 2362 cluster to be: age = 5 (+1-2) Myr, distance = 1480 pc, E(B-V)=0.10 mag. The cluster age was independently determined for both high mass (2.1 - 36Msun) and low mass (0.7 - 1.2Msun) stars with excellent agreement between the ages derived using post-main sequence and pre-main sequence evolutionary tracks for the high and low mass stars respectively. Analysis of this cluster's color-magnitude diagram reveals a well defined pre-main sequence (covering DeltaV ~ 9 magnitudes in V and extending from early A stars to near the hydrogen burning limit) which makes this cluster an ideal laboratory for pre-main sequence evolution studies.Comment: 9 pages, 3 figures, to be published in ApJ

    Open clusters in the Third Galactic Quadrant : III. Alleged binary clusters

    Get PDF
    Aims: We aim to determine accurate distances and ages of eight open clusters in order to: (1) assess their possible binarity (2) provide probes to trace the structure of the Third Galactic Quadrant. Methods: Cluster reddenings, distances, ages and metallicities are derived from ZAMS and isochrone fits in UBVRI photometric diagrams. Field contamination is reduced by restricting analysis to stars within the cluster limits derived from star counts. Further membership control is done by requiring that stars have consistent positions in several diagrams and by using published spectral types. Results: The derived distances, ages and metallicities have shown that none of the analysed clusters compose binary/double systems. Of the four candidate pairs, only NGC 2383/NGC 2384 are close to each other, but have different metallicities and ages. Ruprecht 72 and Ruprecht 158 are not clusters but fluctuations of the field stellar density. Haffner 18 is found to be the superposition of two stellar groups at different distances: Haffner 18(1) at 4.5 kpc and Haffner 18(2) between 9.5 and 11.4 kpc from the Sun. The derived distances and ages have been used to situate the clusters in the Galactic context. In particular, young stellar groups trace spiral structure at large Galactocentric radii. At least two clusters formed during the last few 108 yr in an interstellar medium with less than solar abundances. Conclusions: In contrast with the LMC, double clusters are apparently rare, or even non existent, in the undisturbed environment of the Third Galactic Quadrant. This leaves open the question of whether binary clusters form more easily toward denser and more violent regions of the Milky Way such as the inner Galaxy.Facultad de Ciencias Astronómicas y Geofísica
    corecore