52 research outputs found

    Recent developments on the thermal properties, stability and applications of nanofluids in machining, solar energy and biomedicine

    Get PDF
    In this review work, the recent progress made in the use of nanofluids (NFs) applied in three specific areas will be presented: machining, solar energy, and biomedical engineering. Within this context, the discussions will be guided by emphasizing the thermal and stability properties of these fluids. In machining, NFs play a prominent role in the processes of turning, milling, drilling, and grinding, being responsible for their optimization as well as improving the useful life of the tools and reducing costs. In the solar energy field, NFs have been used in the thermal management of the panels, controlling and homogenizing the operating temperature of these systems. In the biomedical area, the advantages of using NFs come from the treatment of cancer cells, the development of vaccines before the improvement of diagnostic imaging, and many others. In all lines of research mentioned in this study, the main parameters that have limited or encouraged the use of these fluids are also identified and debated. Finally, the discussions presented in this review will inspire and guide researchers in developing new techniques to improve the applications of NFs in several fields.This research was partially funded by the Portuguese national funds of FCT/MCTES (PIDDAC) through the base funding from the following research units: UIDB/00690/2020 (CIMO), UIDB/04077/2020 (MEtRICs), and UIDB/00532/2020 (CEFT). The authors are also grateful for the funding of ANI and CIMO through the projects POCI-01-02B7-FEDER-069844 and CMFPE3- EXPL2021CIMO_01, respectively. The authors also acknowledge partial financial support from the project NORTE-01-0145-FEDER-030171 (PTDC/EMD-EMD/30171/2017), PTDC/EME-TED/7801/ 2020 and EXPL/EME-EME/0732/2021 funded by the NORTE 2020 Portugal Regional Operational Programme, under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) and by Fundação para a Ciência e Tecnologia (FCT).info:eu-repo/semantics/publishedVersio

    Recent developments on the thermal properties, stability and applications of nanofluids in machining, solar energy and biomedicine

    Get PDF
    In this review work, the recent progress made in the use of nanofluids (NFs) applied in three specific areas will be presented: machining, solar energy, and biomedical engineering. Within this context, the discussions will be guided by emphasizing the thermal and stability properties of these fluids. In machining, NFs play a prominent role in the processes of turning, milling, drilling, and grinding, being responsible for their optimization as well as improving the useful life of the tools and reducing costs. In the solar energy field, NFs have been used in the thermal management of the panels, controlling and homogenizing the operating temperature of these systems. In the biomedical area, the advantages of using NFs come from the treatment of cancer cells, the development of vaccines before the improvement of diagnostic imaging, and many others. In all lines of research mentioned in this study, the main parameters that have limited or encouraged the use of these fluids are also identified and debated. Finally, the discussions presented in this review will inspire and guide researchers in developing new techniques to improve the applications of NFs in several fields.This research was partially funded by the Portuguese national funds of FCT/MCTES (PIDDAC) through the base funding from the following research units: UIDB/00690/2020 (CIMO), UIDB/04077/2020 (MEtRICs), and UIDB/00532/2020 (CEFT). The authors are also grateful for the funding of ANI and CIMO through the projects POCI-01-02B7-FEDER-069844 and CMFPE3- EXPL2021CIMO_01, respectively. The authors also acknowledge partial financial support from the project NORTE-01-0145-FEDER-030171 (PTDC/EMD-EMD/30171/2017), PTDC/EME-TED/7801/ 2020 and EXPL/EME-EME/0732/2021 funded by the NORTE 2020 Portugal Regional Operational Programme, under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) and by Fundação para a Ciência e Tecnologia (FCT)

    A review of the advances and challenges in measuring the thermal conductivity of nanofluids

    Get PDF
    Fluids containing colloidal suspensions of nanometer-sized particles (nanofluids) have been extensively investigated in recent decades with promising results. Driven by the increase in the thermal conductivity of these new thermofluids, this topic has been growing in order to improve the thermal capacity of a series of applications in the thermal area. However, when it comes to measure nanofluids (NFs) thermal conductivity, experimental results need to be carefully analyzed. Hence, in this review work, the main traditional and new techniques used to measure thermal conductivity of the NFs are presented and analyzed. Moreover, the fundamental parameters that affect the measurements of the NFs’ thermal conductivity, such as, temperature, concentration, preparation of NFs, characteristics and thermophysical properties of nanoparticles, are also discussed. In this review, the experimental methods are compared with the theoretical methods and, also, a comparison between experimental methods are made. Finally, it is expected that this review will provide a guidance to researchers interested in implementing and developing the most appropriate experimental protocol, with the aim of increasing the level of reliability of the equipment used to measure the NFs thermal conductivity.This work has been funded by Portuguese national funds of FCT/MCTES (PIDDAC) through the base funding from the following research units: UIDB/00532/2020, UIDB/04077/2020, UIDP/04077/2020 and UIDP/04436/2020. The authors are also grateful for the funding of FCT through the projects NORTE-01-0145-FEDER-030171, PTDC/EME-TED/7801/2020, POCI-01-0145- FEDER-016861, POCI-01-0145-FEDER-028159, funded by COMPETE2020, NORTE2020, PORTUGAL2020, and FEDER

    Numerical optimization of a microchannel geometry for nanofluid flow and heat dissipation assessment

    Get PDF
    In this study, a numerical approach was carried out to analyze the effects of different geometries of microchannel heat sinks on the forced convective heat transfer in single-phase flow. The simulations were performed using the commercially available software COMSOLMultiphysics 5.6® (Burlington, MA, USA) and its results were compared with those obtained from experimental tests performed in microchannel heat sinks of polydimethylsiloxane (PDMS). Distilled water was used as the working fluid under the laminar fluid flow regime, with a maximum Reynolds number of 293. Three sets of geometries were investigated: rectangular, triangular and circular. The different configurations were characterized based on the flow orientation, type of collector and number of parallel channels. The main results show that the rectangular shaped collector was the one that led to a greater uniformity in the distribution of the heat transfer in the microchannels. Similar results were also obtained for the circular shape. For the triangular geometry, however, a disturbance in the jet impingement was observed, leading to the least uniformity. The increase in the number of channels also enhanced the uniformity of the flow distribution and, consequently, improved the heat transfer performance, which must be considered to optimize new microchannel heat sink designs. The achieved optimized design for a heat sink, with microchannels for nanofluid flow and a higher heat dissipation rate, comprised a rectangular collector with eight microchannels and vertical placement of the inlet and outlet.This work has been funded by Portuguese national funds of FCT/MCTES (PIDDAC) through base funding from the following research units: UIDB/00532/2020 (Transport Phenomena Research Center-CEFT), UIDB/04077/2020 (MEtRICs) and UIDP/04436/2020. The authors are also grateful for the funding of Fundação para a Ciência e a Tecnologia-FCT through the projectsLISBOA-01-0145-FEDER-030171/NORTE-01-0145-FEDER-030171 (PTDC/EMESIS/30171/2017), funded by COMPETE2020, NORTE2020, PORTUGAL2020, and FEDER. The authors also acknowledge FCT for partially financing the research under the framework of the project JICAM/0003/2017. Finally, I. Gonçalves acknowledges FCT for supporting her PhD fellowship, ref.: 2020.08646.B

    Pool boiling of nanofluids on biphilic surfaces: An experimental and numerical study

    Get PDF
    This study addresses the combination of customized surface modification with the use of nanofluids, to infer on its potential to enhance pool-boiling heat transfer. Hydrophilic surfaces patterned with superhydrophobic regions were developed and used as surface interfaces with different nanofluids (water with gold, silver, aluminum and alumina nanoparticles), in order to evaluate the effect of the nature and concentration of the nanoparticles in bubble dynamics and consequently in heat transfer processes. The main qualitative and quantitative analysis was based on extensive post-processing of synchronized high-speed and thermographic images. To study the nucleation of a single bubble in pool boiling condition, a numerical model was also implemented. The results show an evident benefit of using biphilic patterns with well-established distances between the superhydrophobic regions. This can be observed in the resulting plot of the dissipated heat flux for a biphilic pattern with seven superhydrophobic spots, δ = 1/d and an imposed heat flux of 2132 w/m2. In this case, the dissipated heat flux is almost constant (except in the instant t* ≈ 0.9 when it reaches a peak of 2400 W/m2), whilst when using only a single superhydrophobic spot, where the heat flux dissipation reaches the maximum shortly after the detachment of the bubble, dropping continuously until a new necking phase starts. The biphilic patterns also allow a controlled bubble coalescence, which promotes fluid convection at the hydrophilic spacing between the superhydrophobic regions, which clearly contributes to cool down the surface. This effect is noticeable in the case of employing the Ag 1 wt% nanofluid, with an imposed heat flux of 2132 W/m2, where the coalescence of the drops promotes a surface cooling, identified by a temperature drop of 0.7 °C in the hydrophilic areas. Those areas have an average temperature of 101.8 °C, whilst the average temperature of the superhydrophobic spots at coalescence time is of 102.9 °C. For low concentrations as the ones used in this work, the effect of the nanofluids was observed to play a minor role. This can be observed on the slight discrepancy of the heat dissipation decay that occurred in the necking stage of the bubbles for nanofluids with the same kind of nanoparticles and different concentration. For the Au 0.1 wt% nanofluid, a heat dissipation decay of 350 W/m2 was reported, whilst for the Au 0.5 wt% nanofluid, the same decay was only of 280 W/m2. The results of the numerical model concerning velocity fields indicated a sudden acceleration at the bubble detachment, as can be qualitatively analyzed in the thermographic images obtained in this work. Additionally, the temperature fields of the analyzed region present the same tendency as the experimental results.This work was funded by Portuguese national funds of FCT/MCTES (PIDDAC) through the base funding from the following research units: UIDB/00532/2020 (Transport Phenomena Research Center, CEFT), UIDB/04077/2020 (MEtRICs) and UIDP/04436/2020. The authors are also grateful for the funding of FCT through the projects LISBOA-01-0145-FEDER-030171/NORTE-01-0145-FEDER-030171 (PTDC/EME-SIS/30171/2017), funded by COMPETE2020, NORTE2020, PORTUGAL2020 and FEDER. The authors also acknowledge FCT for partially financing the research under the framework of the project UTAP-EXPL/CTE/0064/2017, financiado no ambito do Projeto 5665-Parcerias Internacionais de Ciencia e Tecnologia, UT Austin Programme. Mr Pedro Pontes also acknowledgesFCT for his fellowship ref. SFRH/BD/149286/2019

    Tecnologias digitais na educação

    Get PDF
    Tecnologias Digitais na Educação apresenta uma seleção de artigos que são resultado das monografias da primeira turma do curso de Especialização em Novas Tecnologias na Educação

    3D printing techniques and their applications to organ-on-a-chip platforms: a systematic review

    Get PDF
    Three-dimensional (3D) in vitro models, such as organ-on-a-chip platforms, are an emerging and effective technology that allows the replication of the function of tissues and organs, bridging the gap amid the conventional models based on planar cell cultures or animals and the complex human system. Hence, they have been increasingly used for biomedical research, such as drug discovery and personalized healthcare. A promising strategy for their fabrication is 3D printing, a layer-by-layer fabrication process that allows the construction of complex 3D structures. In contrast, 3D bioprinting, an evolving biofabrication method, focuses on the accurate deposition of hydrogel bioinks loaded with cells to construct tissue-engineered structures. The purpose of the present work is to conduct a systematic review (SR) of the published literature, according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, providing a source of information on the evolution of organ-on-a-chip platforms obtained resorting to 3D printing and bioprinting techniques. In the literature search, PubMed, Scopus, and ScienceDirect databases were used, and two authors independently performed the search, study selection, and data extraction. The goal of this SR is to highlight the importance and advantages of using 3D printing techniques in obtaining organ-on-a-chip platforms, and also to identify potential gaps and future perspectives in this research field. Additionally, challenges in integrating sensors in organs-on-chip platforms are briefly investigated and discussed.The authors are grateful for the funding of FCT through the projects NORTE-01-0145- FEDER-029394, NORTE-01-0145-FEDER-030171 funded by COMPETE2020, NORTE2020, PORTUGAL2020, and FEDER. This work was also supported by Fundação para a Ciência e a Tecnologia (FCT) under the strategic grants UIDB/04077/2020, UIDB/00319/2020, UIDB/04436/2020 and UIDB/00532/2020. This work was also funded by AMED-CREST Grant Number JP20gm1310001h0002.Violeta Carvalho acknowledges the PhD scholarship UI/BD/151028/2021 attributed by FCT. Inês Gonçalves acknowledges the PhD scholarship BD/08646/2020 attributed by FCT

    Organ-on-a-chip platforms for drug screening and delivery in tumor cells: a systematic review

    Get PDF
    The development of cancer models that rectify the simplicity of monolayer or static cell cultures physiologic microenvironment and, at the same time, replicate the human system more accurately than animal models has been a challenge in biomedical research. Organ-on-a-chip (OoC) devices are a solution that has been explored over the last decade. The combination of microfluidics and cell culture allows the design of a dynamic microenvironment suitable for the evaluation of treatments’ efficacy and effects, closer to the response observed in patients. This systematic review sums the studies from the last decade, where OoC with cancer cell cultures were used for drug screening assays. The studies were selected from three databases and analyzed following the research guidelines for systematic reviews proposed by PRISMA. In the selected studies, several types of cancer cells were evaluated, and the majority of treatments tested were standard chemotherapeutic drugs. Some studies reported higher drug resistance of the cultures on the OoC devices than on 2D cultures, which indicates the better resemblance to in vivo conditions of the former. Several studies also included the replication of the microvasculature or the combination of different cell cultures. The presence of vasculature can influence positively or negatively the drug efficacy since it contributes to a greater diffusion of the drug and also oxygen and nutrients. Co-cultures with liver cells contributed to the evaluation of the systemic toxicity of some drugs metabolites. Nevertheless, few studies used patient cells for the drug screening assays.This work has been supported by the projects NORTE-01-0145-FEDER-030171 (project reference PTDC/EME-SIS/30171/2017), NORTE-01-0145-FEDER-029394 (project reference PTDC/EMDEMD/29394/2017), through the COMPETE2020, the Lisb@2020, the Programa Operacional Regional do Norte–Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement through the European Regional Development Fund (FEDER) and by Fundação para a Ciência e Tecnologia (FCT), and through FEDER and FCT, project references EXPL/EMD-EMD/0650/2021 and PTDC/EEI-EEE/2846/2021. The authors also acknowledge the partial financial support within the R&D Units Project Scope: UIDB/00319/2020, UIDB/04077/2020, UIDB/00690/2020, UIDB/04436/2020. This work was also funded by AMED-CREST Grant Number JP20gm1310001h0002. Raquel O. Rodrigues (R.O.R.) thanks FCT for her contract funding provided through 2020.03975.CEECIND

    The impact of diabetes on multiple avoidable admissions: a cross-sectional study

    Get PDF
    Background Multiple admissions for ambulatory care sensitive conditions (ACSC) are responsible for an important proportion of health care expenditures. Diabetes is one of the conditions consensually classified as an ACSC being considered a major public health concern. The aim of this study was to analyse the impact of diabetes on the occurrence of multiple admissions for ACSC. Methods We analysed inpatient data of all public Portuguese NHS hospitals from 2013 to 2015 on multiple admissions for ACSC among adults aged 18 or older. Multiple ACSC users were identified if they had two or more admissions for any ACSC during the period of analysis. Two logistic regression models were computed. A baseline model where a logistic regression was performed to assess the association between multiple admissions and the presence of diabetes, adjusting for age and sex. A full model to test if diabetes had no constant association with multiple admissions by any ACSC across age groups. Results Among 301,334 ACSC admissions, 144,209 (47.9%) were classified as multiple admissions and from those, 59,436 had diabetes diagnosis, which corresponded to 23,692 patients. Patients with diabetes were 1.49 times (p < 0,001) more likely to be admitted multiple times for any ACSC than patients without diabetes. Younger adults with diabetes (18–39 years old) were more likely to become multiple users. Conclusion Diabetes increases the risk of multiple admissions for ACSC, especially in younger adults. Diabetes presence is associated with a higher resource utilization, which highlights the need for the implementation of adequate management of chronic diseases policies.NOVASaudeinfo:eu-repo/semantics/publishedVersio
    • …
    corecore