229 research outputs found

    Passive scalar intermittency in low temperature helium flows

    Full text link
    We report new measurements of turbulent mixing of temperature fluctuations in a low temperature helium gas experiment, spanning a range of microscale Reynolds number, RλR_{\lambda}, from 100 to 650. The exponents ξn\xi_{n} of the temperature structure functions rξn \sim r^{\xi_{n}} are shown to saturate to ξ1.45±0.1\xi_{\infty} \simeq 1.45 \pm 0.1 for the highest orders, n10n \sim 10. This saturation is a signature of statistics dominated by front-like structures, the cliffs. Statistics of the cliff characteristics are performed, particularly their width are shown to scale as the Kolmogorov length scale.Comment: 4 pages, with 4 figure

    Inertial waves and modes excited by the libration of a rotating cube

    Get PDF
    We report experimental measurements of the flow in a cubic container submitted to a longitudinal libration, i.e. a rotation modulated in time. Velocity fields in a vertical and a horizontal plane are measured in the librating frame using a corotating particle image velocimetry system. When the libration frequency σ0\sigma_0 is smaller than twice the mean rotation rate Ω0\Omega_0, inertial waves can propagate in the interior of the fluid. At arbitrary excitation frequencies σ0<2Ω0\sigma_0<2\Omega_0, the oscillating flow shows two contributions: (i) a basic flow induced by the libration motion, and (ii) inertial wave beams propagating obliquely upward and downward from the horizontal edges of the cube. In addition to these two contributions, inertial modes may also be excited at some specific resonant frequencies. We characterize in particular the resonance of the mode of lowest order compatible with the symmetries of the forcing, noted [2,1,+]. By comparing the measured flow fields to the expected inviscid inertial modes computed numerically [L.R.M. Maas, Fluid Dyn. Res. \textbf{33}, 373 (2003)], we show that only a subset of inertial modes, matching the symmetries of the forcing, can be excited by the libration.Comment: Phys. Fluids (in press

    Direct measurements of anisotropic energy transfers in a rotating turbulence experiment

    Full text link
    We investigate experimentally the influence of a background rotation on the energy transfers in decaying grid turbulence. The anisotropic energy flux density, F(r)={\bf F} ({\bf r}) = , where δu\delta {\bf u} is the vector velocity increment over separation r{\bf r}, is determined for the first time using Particle Image Velocimetry. We show that rotation induces an anisotropy of the energy flux F\nabla \cdot {\bf F}, which leads to an anisotropy growth of the energy distribution E(r)=<(δu)2>E({\bf r}) = < (\delta {\bf u})^2 >, in agreement with the K\'arm\'an-Howarth-Monin equation. Surprisingly, our results prove that this anisotropy growth is essentially driven by a nearly radial, but orientation-dependent, energy flux density F(r){\bf F} ({\bf r}).Comment: to appear in Physical Review Letters (July 8, 2011 issue

    Supervised Associative Learning in Spiking Neural Network

    Get PDF
    In this paper, we propose a simple supervised associative learning approach for spiking neural networks. In an excitatory-inhibitory network paradigm with Izhikevich spiking neurons, synaptic plasticity is implemented on excitatory to excitatory synapses dependent on both spike emission rates and spike timings. As results of learning, the network is able to associate not just familiar stimuli but also novel stimuli observed through synchronised activity within the same subpopulation and between two associated subpopulations

    Characterization of ten novel Ty1/copia-like retrotransposon families of the grapevine genome

    Get PDF
    BACKGROUND: Retrotransposons make a significant contribution to the size, organization and genetic diversity of their host genomes. To characterize retrotransposon families in the grapevine genome (the fourth crop plant genome sequenced) we have combined two approaches: a PCR-based method for the isolation of RnaseH-LTR sequences with a computer-based sequence similarity search in the whole-genome sequence of PN40024. RESULTS: Supported by a phylogenic analysis, ten novel Ty1/copia families were distinguished in this study. To select a canonical reference element sequence from amongst the various insertions in the genome belonging to each retroelement family, the following screening criteria were adopted to identify the element sequence with: (1) perfect 5 bp-duplication of target sites, (2) the highest level of identity between 5’ and 3’-LTR within a single insertion sequence, and (3) longest, un-interrupted coding capacity within the gag-pol ORF. One to eight copies encoding a single putatively functional gag-pol polyprotein were found for three families, indicating that these families could be still autonomous and active. For the others, no autonomous copies were identified. However, a subset of copies within the presumably non-autonomous families had perfect identity between their 5’ and 3’ LTRs, indicating a recent insertion event. A phylogenic study based on the sequence alignment of the region located between reverse transcriptase domains I and VII distinguished these 10 families from other plant retrotransposons. Including the previously characterized Ty1/copia-like grapevine retrotransposons Tvv1 and Vine 1 and the Ty3/gypsy-like Gret1 in this assessment, a total of 1709 copies were identified for the 13 retrotransposon families, representing 1.24% of the sequenced genome. The copy number per family ranged from 91-212 copies. We performed insertion site profiling for 8 out of the 13 retrotransposon families and confirmed multiple insertions of these elements across the Vitis genus. Insertional polymorphism analysis and dating of full-length copies based on their LTR divergence demonstrated that each family has a particular amplification history, with 71% of the identified copies being inserted within the last 2 million years. CONCLUSION: The strategy we used efficiently delivered new Ty1/copia-like retrotransposon sequences, increasing the total number of characterized grapevine retrotrotransposons from 3 to 13. We provide insights into the representation and dynamics of the 13 families in the genome. Our data demonstrated that each family has a particular amplification pattern, with 7 families having copies recently inserted within the last 0.2 million year. Among those 7 families with recent insertions, three retain the capacity for activity in the grape genome today

    Experimental and numerical investigations of flow structure and momentum transport in a turbulent buoyancy-driven flow inside a tilted tube.

    Get PDF
    Buoyancy-driven turbulent mixing of fluids of slightly different densities [At = Δρ/(2〈ρ〉) = 1.15×10−2] in a long circular tube tilted at an angle θ = 15° from the vertical is studied at the local scale, both experimentally from particle image velocimetry and laser induced fluorescence measurements in the vertical diametrical plane and numerically throughout the tube using direct numerical simulation. In a given cross section of the tube, the axial mean velocity and the mean concentration both vary linearly with the crosswise distance z from the tube axis in the central 70% of the diameter. A small crosswise velocity component is detected in the measurement plane and is found to result from a four-cell mean secondary flow associated with a nonzero streamwise component of the vorticity. In the central region of the tube cross section, the intensities of the three turbulent velocity fluctuations are found to be strongly different, that of the streamwise fluctuation being more than twice larger than that of the spanwise fluctuation which itself is about 50% larger than that of the crosswise fluctuation. This marked anisotropy indicates that the turbulent structure is close to that observed in homogeneous turbulent shear flows. Still in the central region, the turbulent shear stress dominates over the viscous stress and reaches a maximum on the tube axis. Its crosswise variation is approximately accounted for by a mixing length whose value is about one-tenth of the tube diameter. The momentum exchange in the core of the cross section takes place between its lower and higher density parts and there is no net momentum exchange between the core and the near-wall regions. A sizable part of this transfer is due both to the mean secondary flow and to the spanwise turbulent shear stress. Near-wall regions located beyond the location of the extrema of the axial velocity (|z|≳0.36 d) are dominated by viscous stresses which transfer momentum toward (from) the wall near the top (bottom) of the tube

    Comportement electrochimique des actinides dans les milieux organiques des procedes de separation chimique

    Get PDF
    International audiencePresentation du contexte de l'etude, des objectifs du travail de these et des premieres experiences realisees

    Molecular solids of actinide hexacyanoferrate: Structure and bonding

    Get PDF
    The hexacyanometallate family is well known in transition metal chemistry because the remarkable electronic delocalization along the metal-cyano-metal bond can be tuned in order to design systems that undergo a reversible and controlled change of their physical properties. We have been working for few years on the description of the molecular and electronic structure of materials formed with [Fe(CN)6]n- building blocks and actinide ions (An = Th, U, Np, Pu, Am) and have compared these new materials to those obtained with lanthanide cations at oxidation state +III. In order to evaluate the influence of the actinide coordination polyhedron on the three- dimensional molecular structure, both atomic number and formal oxidation state have been varied : oxidation states +III, +IV. EXAFS at both iron K edge and actinide LIII edge is the dedicated structural probe to obtain structural information on these systems. Data at both edges have been combined to obtain a three-dimensional model. In addition, qualitative electronic information has been gathered with two spectroscopic tools : UV-Near IR spectrophotometry and low energy XANES data that can probe each atom of the structural unit : Fe, C, N and An. Coupling these spectroscopic tools to theoretical calculations will lead in the future to a better description of bonding in these molecular solids. Of primary interest is the actinide cation ability to form ionic – covalent bonding as 5f orbitals are being filled by modification of oxidation state and/or atomic number

    The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years

    Get PDF
    Retrotransposons are ubiquitous throughout the genomes of the vascular plants, but individual retrotransposon families tend to be confined to the level of plant genus or at most family. This restricts the general applicability of a family as molecular markers. Here, we characterize a new plant retrotransposon named Tvv1_Sdem, a member of the Copia superfamily of LTR retrotransposons, from the genome of the wild potato Solanum demissum. Comparative analyses based on structure and sequence showed a high level of similarity of Tvv1_Sdem with Tvv1-VB, a retrotransposon previously described in the grapevine genome Vitis vinifera. Extending the analysis to other species by in silico and in vitro approaches revealed the presence of Tvv1 family members in potato, tomato, and poplar genomes, and led to the identification of full-length copies of Tvv1 in these species. We were also able to identify polymorphism in UTL sequences between Tvv1_Sdem copies from wild and cultivated potatoes that are useful as molecular markers. Combining different approaches, our results suggest that the Tvv1 family of retrotransposons has a monophyletic origin and has been maintained in both the rosids and the asterids, the major clades of dicotyledonous plants, since their divergence about 100 MYA. To our knowledge, Tvv1 represents an unusual plant retrotransposon metapopulation comprising highly similar members disjointedly dispersed among very distant species. The twin features of Tvv1 presence in evolutionarily distant genomes and the diversity of its UTL region in each species make it useful as a source of robust molecular markers for diversity studies and breeding.Peer reviewe
    corecore