545 research outputs found

    Common universal behavior of magnetic domain walls driven by spin-polarized electrical current and magnetic field

    Get PDF
    We explore the universal behaviors of a magnetic domain wall driven by the spin-transfer torque of an electrical current, in a ferromagnetic (Ga,Mn)(As,P) thin film with perpendicular magnetic anisotropy. For a current transverse to the domain wall, the dynamics of the thermally activated creep regime and the depinning transition are found to be compatible with a self-consistent universal description of magnetic-field-induced domain-wall dynamics. This common universal behavior, characteristic of the so-called quenched Edwards-Wilkinson universality class, is confirmed by an independent analysis of domain-wall roughness. Complementary investigations reveal the directional properties of interaction between current and domain walls which result in the instability of their transverse orientation.Fil: Diaz Pardo, R.. Centre National de la Recherche Scientifique; Francia. Université Paris Sud; FranciaFil: Moisan, N.. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaFil: Albornoz, Lucas Javier. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Lemaßtre, A.. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaFil: Curiale, Carlos Javier. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Jeudy, V.. Centre National de la Recherche Scientifique; Francia. Université Paris Sud; Franci

    Imaging Gold Nanoparticles in Living Cells Environments using Heterodyne Digital Holographic Microscopy

    Full text link
    This paper describes an imaging microscopic technique based on heterodyne digital holography where subwavelength-sized gold colloids can be imaged in cell environment. Surface cellular receptors of 3T3 mouse fibroblasts are labeled with 40 nm gold nanoparticles, and the biological specimen is imaged in a total internal reflection configuration with holographic microscopy. Due to a higher scattering efficiency of the gold nanoparticles versus that of cellular structures, accurate localization of a gold marker is obtained within a 3D mapping of the entire sample's scattered field, with a lateral precision of 5 nm and 100 nm in the x,y and in the z directions respectively, demonstrating the ability of holographic microscopy to locate nanoparticles in living cells environments

    Tuning a Schottky barrier in a photoexcited topological insulator with transient Dirac cone electron-hole asymmetry

    Full text link
    The advent of Dirac materials has made it possible to realize two dimensional gases of relativistic fermions with unprecedented transport properties in condensed matter. Their photoconductive control with ultrafast light pulses is opening new perspectives for the transmission of current and information. Here we show that the interplay of surface and bulk transient carrier dynamics in a photoexcited topological insulator can control an essential parameter for photoconductivity - the balance between excess electrons and holes in the Dirac cone. This can result in a strongly out of equilibrium gas of hot relativistic fermions, characterized by a surprisingly long lifetime of more than 50 ps, and a simultaneous transient shift of chemical potential by as much as 100 meV. The unique properties of this transient Dirac cone make it possible to tune with ultrafast light pulses a relativistic nanoscale Schottky barrier, in a way that is impossible with conventional optoelectronic materials.Comment: Nature Communications, in press (12 pages, 6 figures

    The prominent role of the heaviest fragment in multifragmentation and phase transition for hot nuclei

    Get PDF
    The role played by the heaviest fragment in partitions of multifragmenting hot nuclei is emphasized. Its size/charge distribution (mean value, fluctuations and shape) gives information on properties of fragmenting nuclei and on the associated phase transition.Comment: 11 pages, Proceedings of IWND09, August 23-25, Shanghai (China

    Neutron to proton ratios of quasiprojectile and midrapidity emission in the 64^{64}Zn + 64^{64}Zn reaction at 45 MeV/nucleon

    Get PDF
    Simultaneous measurement of both neutrons and charged particles emitted in the reaction 64^{64}Zn + 64^{64}Zn at 45 MeV/nucleon allows comparison of the neutron to proton ratio at midrapidity with that at projectile rapidity. The evolution of N/Z in both rapidity regimes with increasing centrality is examined. For the completely re-constructed midrapidity material one finds that the neutron-to-proton ratio is above that of the overall 64^{64}Zn + 64^{64}Zn system. In contrast, the re-constructed ratio for the quasiprojectile is below that of the overall system. This difference provides the most complete evidence to date of neutron enrichment of midrapidity nuclear matter at the expense of the quasiprojectile

    Ultrafast surface carrier dynamics in the topological insulator Bi2Te3

    Full text link
    We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi2_2Te3_3 following a femtosecond laser excitation. Using time and angle resolved photoelectron spectroscopy, we provide a direct real-time visualisation of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few ps are necessary for the Dirac cone non-equilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone

    Influence of Neutron Enrichment on Disintegration Modes of Compound Nuclei

    Full text link
    Cross sections, kinetic energy and angular distributions of fragments with charge 6≀\leZ≀\le28 emitted in 78,82Kr+40C at 5.5 MeV/A reactions were measured at the GANIL facility using the INDRA apparatus. This experiment aims to investigate the influence of the neutron enrichment on the decay mechanism of excited nuclei. Data are discussed in comparison with predictions of transition state and Hauser-Feshbach models.Comment: 8 pages, 1 figure, paper presented at the First Workshop on "State of the Art in Nuclear Cluster Physics" 13-16 May, 2008, at Strasbourg, France (SOTANCP2008) and accepted for publication at International Journal of Modern Physics E (Special Issue), Proceedings of SOTANCP2008 (to be published
    • 

    corecore