9 research outputs found

    Cytokine Requirements for Acute and Basal Homeostatic Proliferation of Naive and Memory CD8+ T Cells

    Get PDF
    Both naive and memory T cells undergo antigen-independent proliferation after transfer into a T cell–depleted environment (acute homeostatic proliferation), whereas only memory T cells slowly divide in a full T cell compartment (basal proliferation). We show, first, that naive and memory CD8+ T cells have different cytokine requirements for acute homeostatic proliferation. Interleukin (IL)-7 receptor(R)α–mediated signals were obligatory for proliferation of naive T cells in lymphopenic hosts, whereas IL-15 did not influence their division. Memory T cells, on the other hand, could use either IL-7Rα– or IL-15–mediated signals for acute homeostatic proliferation: their proliferation was delayed when either IL-7Rα was blocked or IL-15 removed, but only when both signals were absent was proliferation ablated. Second, the cytokine requirements for basal and acute homeostatic proliferation of CD8+ memory T cells differ, as basal division of memory T cells was blocked completely in IL-15–deficient hosts. These data suggest a possible mechanism for the dearth of memory CD8+ T cells in IL-15– and IL-15Rα–deficient mice is their impaired basal proliferation. Our results show that naive and memory T lymphocytes differ in their cytokine dependence for acute homeostatic proliferation and that memory T lymphocytes have distinct requirements for proliferation in full versus empty compartments

    RIP4 Is an Ankyrin Repeat-Containing Kinase Essential for Keratinocyte Differentiation

    Get PDF
    AbstractThe epidermis is a stratified, continually renewing epithelium dependent on a balance among cell proliferation, differentiation, and death for homeostasis. In normal epidermis, a mitotically active basal layer gives rise to terminally differentiating keratinocytes that migrate outward and are ultimately sloughed from the skin surface as enucleated squames. Although many proteins are known to function in maintaining epidermal homeostasis, the molecular coordination of these events is poorly understood [1, 2]. RIP4 is a novel RIP (receptor-interacting protein) family kinase with ankyrin repeats cloned from a keratinocyte cDNA library. RIP4 deficiency in mice results in perinatal lethality associated with abnormal epidermal differentiation. The phenotype of RIP4−/− mice in part resembles that of mice lacking IKKα, a component of a complex that regulates NF-kappaB [3–5]. Despite the similar keratinocyte defects in RIP4- and IKKα-deficient mice, these kinases function in distinct pathways. RIP4 functions cell autonomously within the keratinocyte lineage. Unlike IKKα, RIP4-deficient skin fails to fully differentiate when grafted onto a normal host [6]. Instead, abnormal hair follicle development and epidermal dysplasia, indicative of progression into a more pathologic state, are observed. Thus, RIP4 is a critical component of a novel pathway that controls keratinocyte differentiation

    Interleukin-1 regulates CXCL8 release and influences disease outcome in response to streptococcus pneumoniae, defining intercellular cooperation between pulmonary epithelial cells and macrophages

    No full text
    The success of Streptococcus pneumoniae (the pneumococcus) as a pulmonary pathogen is related to its restriction of innate immune responses by respiratory epithelial cells. The mechanisms used to overcome this restriction are incompletely elucidated. Pulmonary chemokine expression involves complex cellular and molecular networks, involving the pulmonary epithelium, but the specific cellular interactions and the cytokines that control them are incompletely defined. We show that serotype 2 or 4 pneumococci induce only modest levels of CXCL8 expression from epithelial cell lines, even in the absence of a polysaccharide capsule. In contrast, coculture of A549 cells with the macrophage-like THP-1 cell line, differentiated with vitamin D, or monocyte-derived macrophages enhanced CXCL8 release. Supernatants from the THP-1 cell line prime A549 cells to release CXCL8 at levels similar to cocultures. Interleukin-1Ra (IL-1Ra) inhibits CXCL8 release from cocultures and reduces the activity of macrophage-conditioned media, but inhibition of tumor necrosis factor alpha (TNF-alpha) had only a minimal effect on CXCL8 release. Release of IL-1 beta but not TNF-alpha was upregulated in cocultures. IL-1 type 1 receptor knockout C57BL/6 and BALB/c mice confirmed the importance of IL-1 signaling in CXC chemokine expression and neutrophil recruitment in vivo. In fulminant disease, increased IL-1 signaling resulted in increased neutrophils in the airway and more invasive disease. These results demonstrate that IL-1 is an important component of the cellular network involving macrophages and epithelial cells, which facilitates CXC chemokine expression and aids neutrophil recruitment during pneumococcal pneumonia. They also highlight a potential clinical role for anti-IL-1 treatment to limit excessive neutrophilic inflammation in the lung
    corecore