44 research outputs found

    An integrated study of microstructural, geochemical, and seismic properties of the lithospheric mantle above the Kerguelen plume (Indian Ocean)

    Get PDF
    International audiencePeridotite xenoliths brought up to the surface by the volcanism of the Kerguelen Islands represent a mantle that has been affected by a high degree of partial melting followed by intense melt percolation above the Kerguelen plume. These xenoliths are therefore particularly suitable to investigate effects of melt-rock interaction on crystallographic fabrics (lattice-preferred orientation (LPO)) of peridotite minerals and on the LPO-induced seismic properties of peridotites above a mantle plume. We have studied a suite of 16 ultramafic samples representative of different degrees of partial melting and magma-rock interaction among which the protogranular harzburgites are the least metasomatised xenoliths and dunites are the ultimate stage of metasomatism. Olivine LPO is characterized by high concentration of [010] axes perpendicular to the foliation and [100] axes close to the lineation or distributed in the foliation plane in harzburgites, whereas the high concentration of [100] axes is parallel to the lineation and [010] axes is perpendicular to the assumed foliation in dunites. Olivine LPO in harzburgites is interpreted as being due to a deformation regime in axial compression or transpression. The fabric strength of olivine decreases progressively from protogranular to poikilitic harzburgites and finally to dunites, for which it remains nevertheless significant (J index 3.8). Seismic properties calculated from LPO of minerals indicate that metasomatism at higher melt/rock ratio lowers the P wave velocities. The most significant difference between harzburgites and dunites corresponds to the distribution of S wave anisotropy. Harzburgites display the maximum of anisotropy within the foliation plane and the minimum of anisotropy perpendicular to the foliation plane, whereas the lowest anisotropy is parallel to the lineation for dunites. These modifications of seismic properties as a result of metasomatic processes may induce seismic heterogeneities in the mantle above the Kerguelen plume. In addition, assuming a lithospheric mantle primarily harzburgitic and structured with a horizontal foliation, the seismic properties calculated for the Kerguelen xenoliths reconcile the rather high anisotropy evidenced by the horizontally propagating surface waves with the apparent isotropy revealed by the absence of splitting of vertically propagating teleseismic SKS waves recorded by the GEOSCOPE Kerguelen station

    Petrology, mineralogy, and geochemistry of the olivine diogenite NWA 4255: new insights into the magmatic evolution of asteroid 4 Vesta

    Get PDF
    Northwest Africa (NWA) 4255 is a meteorite found in the region of Tindouf (southwestern Algeria), classified as brecciated olivine diogenite. Based on textural observations and orthopyroxene compositions, two different lithologies were determined: harzburgitic and orthopyroxenitic. The orthopyroxenitic lithology contains orthopyroxene (Mg no. 73.99–75.68) and spinel (Cr no. 83.09–85.11, Mg no. 15.57–22.45). On the other hand, the harzburgitic lithology contains orthopyroxene (Mg no. 74.54–77.14) and olivine (Mg no. 70.94–72.57). The iron metal and the sulfides (Troilites) of this sample are present in both lithologies and are low in Ni (Ni < 0.1 wt%). The Fe/Mn ratio of orthopyroxenes ranges from 22.28 to 32.64 and show a large overlap between both lithologies. Lowest ratios are unusual; they are below the defined field for diogenites and olivine diogenites. ∆17O values are − 0.234 ± 0.003 (1σ) and confirm that the NWA 4255 originated from 4Vesta. The results of this study show that there is a genetic linkage between the two lithologies of NWA 4255 and correspond to in situ crystallization processes. This olivine diogenite reflects transition between two major magmatic processes in 4Vesta. The magma ocean of 4Vesta crystallized at equilibrium, allowing the formation of a dunitic and harzburgitic mantle. This late lithology is linked to the peritectic reaction between the olivines formed and the evolved liquid. Our sample then reflects this crucial step of separating this mantle from the residual liquid. This melt evolving on the peritectic allowed the formation of the observed harzburgitic assemblage and then evolves out from the peritectic reaction to proceed to a fractional crystallization process involving the formation of orthopyroxenite

    Significance of the mantle Fe isotope variations

    No full text
    International audienc

    Iron isotopes track planetary accretion or differenciation ?

    No full text
    International audienc

    Mantle heterogeneity through Zn systematics in oceanic basalts: Evidence for a deep carbon cycling

    No full text
    International audienceSubduction at convergent margins introduces a range of sedimentary and crustal materials into the mantle, providing the most dominant form of heterogeneity in the source of oceanic basalts. Yet, the relationship between geochemical variability and lithologic heterogeneities in the Earth's mantle remains controversial. In this paper, we comprehensively review Zn, δ 66 Zn and Sr-Nd isotope systematics in near-primary basalts erupted at mid-ocean ridges (MORB) and ocean islands (OIB) to help constrain the nature and proportion of the carbon (C) bearing slab-derived component in their mantle sources. We show that Zn elemental and isotopic composition of oceanic basalts differs according to their tectonic settings, increasing from MORB (Zn = 62 ± 10 to 73 ± 11 ppm; δ 66 Zn = +0.24 ± 0.01 to +0.31 ± 0.02‰) to OIB (Zn = 74 ± 9 to 124 ± 7 ppm; δ 66 Zn = +0.21 ± 0.07 to +0.40 ± 0.04‰). Unlike MORB, the high Zn and δ 66 Zn recorded in OIB cannot be explained by partial melting of a fertile peridotite mantle source only. Importantly, global correlations between Zn content and Sr-Nd isotopes in oceanic basalts suggest that the Zn enrichment in OIB is inherited from a recycled component in their mantle source rather than melting processes. We demonstrate that involvement of neither typical MORB-like oceanic crust nor subducted sediments can achieve the whole range of Zn composition in OIB. Instead, addition of ≤6% C-bearing oceanic crust to a fertile peridotite mantle fully resolves the Zn heterogeneity of OIB, both in terms of magnitude of Zn enrichment and global trends with Sr-Nd isotopes. Such scenario is corroborated by the elevated δ 66 Zn of OIB relative to MORB and mantle peridotites, reflecting the contribution of isotopically heavy C-bearing phases (δ 66 Zn = +0.91 ± 0.24‰) to the mantle source (δ 66 Zn = +0.16 ± 0.06‰). Our study thus emphasizes the use of Zn and δ 66 Zn systematics to track the nature and origin of mantle carbon, highlighting the role of subduction in the deep carbon cycle. Finally, the positive correlation between Zn content and temperature of magma generation of oceanic basalts suggests that hotter mantle plumes are more likely to carry a higher proportion of dense C-bearing eclogite. Zinc systematics therefore may provide evidence that the presence of heterogeneous domains in the source of OIB is, at least partly, linked to plume thermal buoyancy, bringing new insights into mantle dynamics

    Stable isotope study of rainfall, river drainage and hot springs of the kerguelen archipelago, SW Indian Ocean

    No full text
    International audienceThis study is the first synthesis of chemical composition and stable isotopes values for the Kerguelen archipelago waters. The stable isotope values for rainfall and river waters in the Kerguelen archipelago allow a calculation of the Local Meteoric Water Line (δD rainfall = 8.43 x δ18O rainfall + 11) and a summer runoff line (δD river drainage = 7.45 x δ18O river drainage + 6). Surface waters with low- ion concentrations, chlorine facies and stable isotope values infiltrate through fractures and lava flows recharging deeper groundwaters. Thermal groundwater with low- (7 to 50 °C) and high- (50 to 100 °C) temperatures emerges in different localities in the volcanic archipelago. The low-temperature thermal waters might represent a mixture of high-temperature water with rainfall, thermal gradient changes or shallower infiltration compared to that for high-temperature thermal waters. The Rallier du Baty and Val Travers areas contain geothermal fluids with high-temperature springs, fumaroles and a large water flow. In the Rallier du Baty, the major ion chemistry and O, H, C and S stable isotope ratio of low (7 to 50 °C) temperature spring waters in Rallier du Baty area demonstrate a geothermal-system recharged by meteoric water (δD H2O liquid = 7.0 x δ18O H2O liquid + 0.5) rather than sea water. The chemical and isotopic compositions of elevated temperature spring waters (50 to 100 °C) have a long and complex history of meteoric water interacting with cooling magmas (δD H2O liquid = 1.78 x δ18O H2O liquid –  23). Surficial precipitation of aragonite, kaolinite, pyrite, native sulfur attest to a long livied geothermal system. A temperature of the geothermal reservoir has been estimated between 193 and 259 °C by cation geothermometry. The combination of minerals observed, major ion composition of water with thermodynamic modeling and stable isotope data suggest a geothermal system with a series of water/rock interactions from 50 to 250 °C. The conductive cooling of rising of H2O−CO2-rich fluids have produced a H2O−CO2 phase separation with the precipitation of secondary minerals
    corecore