257 research outputs found

    Comparison between two mobile absolute gravimeters: optical versus atomic interferometers

    Full text link
    We report a comparison between two absolute gravimeters: the LNE-SYRTE cold atoms gravimeter and FG5#220 of Leibniz Universit\"at of Hannover. They rely on different principles of operation: atomic and optical interferometry. Both are movable which enabled them to participated to the last International Comparison of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral comparison took place in the LNE watt balance laboratory and showed an agreement of 4.3 +/- 6.4 {\mu}Gal

    Geographical, seasonal, and depth variation in sinking particle speeds in the North Atlantic

    Get PDF
    Particle sinking velocity is considered to be a controlling factor for carbon transport to the deep sea and thus carbon sequestration in the oceans. The velocities of the material exported to depth are considered to be high in high-latitude productive systems and low in oligotrophic distributions. We use a recently developed method based on the measurement of the radioactive pair 210Po-210Pb to calculate particle sinking velocities in the temperate and oligotrophic North Atlantic during different bloom stages. Our estimates of average sinking velocities (ASVs) show that slowly sinking particles (<100?m?d?1) contribute significantly to carbon flux at all the locations except in the temperate regions during the bloom. ASVs appear to vary strongly with season, which we propose is caused by changes in the epipelagic community structure. Our results are the first field data to confirm the long-standing theory that particle sinking velocities increase with depth, with increases of up to 90% between 50 and 150?m depth

    Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets

    Get PDF
    The Southern Ocean (SO) is an important CO2 reservoir, some of which enters via the production, sinking and remineralization of organic matter. Recent work suggests the fraction of production that sinks is inversely related to production in the SO, a suggestion we confirm from 20 stations in the Scotia Sea. The efficiency with which exported material is transferred to depth (transfer efficiency) is believed to be low in high latitude systems. However, our estimates of transfer efficiency are bimodal, with stations in the seasonal ice zone showing intense losses and others displaying increases in flux with depth. Zooplankton fecal pellets dominated organic carbon flux and at stations with transfer efficiency >100 % fecal pellets were brown, indicative of fresh phytodetritus. We suggest that active flux mediated by zooplankton vertical migration and the presence of sea ice regulate the transfer of organic carbon into the oceans interior in the Southern Ocean

    Modelling LAI at a regional scale with ISBA-A-gs: comparison with satellite-derived LAI over southwestern France

    No full text
    International audienceA CO2-responsive land surface model (the ISBAA- gs model of M®et®eo-France) is used to simulate photosynthesis and Leaf Area Index (LAI) in southwestern France for a 3-year period (2001–2003). A domain of about 170 000 km2 is covered at a spatial resolution of 8 km. The capability of ISBA-A-gs to reproduce the seasonal and the interannual variability of LAI at a regional scale, is assessed with satellite-derived LAI products. One originates from the CYCLOPES programme using SPOT/VEGETATION data, and two products are based on MODIS data. The comparison reveals discrepancies between the satellite LAI estimates and between satellite and simulated LAI values, both in their intensity and in the timing of the leaf onset. The model simulates higher LAI values for the C3 crops than the satellite observations, which may be due to a saturation effect within the satellite signal or to uncertainties in model parameters. The simulated leaf onset presents a significant delay for C3 crops and mountainous grasslands. In-situ observations at a mid-altitude grassland site show that the generic temperature response of photosynthesis used in the model is not appropriate for plants adapted to the cold climatic conditions of the mountainous areas. This study demonstrates the potential of LAI remote sensing products for identifying and locating models' shortcomings at a regional scale

    Quantifying the time lag between organic matter production and export in the surface ocean: Implications for estimates of export efficiency

    Get PDF
    The ocean's potential to export carbon to depth partly depends on the fraction of primary production (PP) sinking out of the euphotic zone (i.e., the e-ratio). Measurements of PP and export flux are often performed simultaneously in the field, although there is a temporal delay between those parameters. Thus, resulting e-ratio estimates often incorrectly assume an instantaneous downward export of PP to export flux. Evaluating results from four mesocosm studies, we find that peaks in organic matter sedimentation lag chlorophyll a peaks by 2 to 15 days. We discuss the implications of these time lags (TLs) for current e-ratio estimates and evaluate potential controls of TL. Our analysis reveals a strong correlation between TL and the duration of chlorophyll a buildup, indicating a dependency of TL on plankton food web dynamics. This study is one step further toward time-corrected e-ratio estimate

    Interactions between species attributes explain population dynamics in stream fishes under changing climate

    Get PDF
    Species responses to climate change have been shown to vary in both direction and magnitude. Understanding these idiosyncratic responses is crucial if we are to predict extinction risk and set up efficient conservation strategies. The variations observed across species have been related to several species attributes including intrinsic traits such as physiological tolerances or life-history strategies but also to niche characteristics (e.g., niche breadth [NB], niche position [NP]). However, although previous studies have successfully linked species attributes to population dynamics or range shifts, few have considered synergistic effects to explain responses to climate variations. Here, we assessed whether five species attributes (fecundity, thermal safety margin, trophic position [TP], NB, and NP) explained interspecific differences in four parameters influencing population dynamics of 35 stream fish species at the French scale. We used Bayesian N-mixture models to estimate posterior distributions of the growth rate, the strength of density dependence, and the influence of both mean temperature and temperature variability on populations for each species. We then used phylogenetic generalized least squares (PGLS) models to investigate the influence of species attributes and their interactions on interspecific differences in each of the four parameter driving population dynamics. The percentage of variance explained by the PGLS models was relatively high (around 40% on average), indicating that species attributes are good predictors of species population dynamics. Furthermore, we showed that the influence of these single attributes was mediated by other attributes, especially NP and TP. Importantly, we found that models including interaction terms had greater support over simple additive models in explaining interspecific differences in population dynamics. Taken together, these results point to the importance of considering the interplay between species attributes in unraveling the mechanisms involved in population dynamics and understanding the vulnerability of species to global change

    The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes

    Get PDF
    CC Attribution 3.0 License.Final revised paper also available at http://www.geosci-model-dev.net/6/929/2013/gmd-6-929-2013.pdfInternational audienceSURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage
    • 

    corecore