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Abstract Particle sinking velocity is considered to be a controlling factor for carbon transport to the deep
sea and thus carbon sequestration in the oceans. The velocities of the material exported to depth are
considered to be high in high-latitude productive systems and low in oligotrophic distributions. We use a
recently developed method based on the measurement of the radioactive pair 210Po-210Pb to calculate
particle sinking velocities in the temperate and oligotrophic North Atlantic during different bloom stages. Our
estimates of average sinking velocities (ASVs) show that slowly sinking particles (<100md�1) contribute
significantly to carbon flux at all the locations except in the temperate regions during the bloom. ASVs appear
to vary strongly with season, which we propose is caused by changes in the epipelagic community structure.
Our results are the first field data to confirm the long-standing theory that particle sinking velocities increase
with depth, with increases of up to 90% between 50 and 150m depth.

1. Introduction

The biological carbon pump (BCP) of the ocean plays a fundamental role in the global carbon cycle. About
5 �10Gt C yr�1 are transported from the surface ocean as biogenic particles to depth [Falkowski et al.,
1998]. The coupling of oceanic production and carbon export removes carbon dioxide from the atmosphere
and transfers it to the dark ocean. This way, the BCP reduces atmospheric carbon dioxide levels to almost half
of what it would be without it [Henson et al., 2011; Sarmiento and Toggweiler, 1984].

Themagnitude of the BCP as a remover of atmospheric carbon dioxide is strongly dependent on the depth to
which particles sink. Each year, 105 PgC are fixed into phytoplankton biomass [Field et al., 1998] andmost of it
is recycled in the upper first hundred meters of the ocean [Bishop et al., 1978;Marsay et al., 2015;Martin et al.,
1987; Suess, 1980]. Only those particles transported to below the winter mixed layer (~1000m) will sequester
carbon for long time scales. Between ~5% and 25% [Martin et al., 1987; Schlitzer, 2000] of the net primary pro-
duction (PP) is exported from the euphotic zone (this ratio of export to PP is termed “export efficiency”
(ExpEff)), yet only 1–3% arrive to the deep sea [Lampitt et al., 2010]. Moreover, there are significant temporal
and regional differences in ExpEff [Henson et al., 2012, 2015].

One of the key parameters that influence temporal and geographical variations of the ExpEff and to which depth
particles sink (i.e., sequestration potential) is the velocity at which particles sink [Berelson, 2002]. This is because slow
sinking speeds allow time for microbes and zooplankton to remineralize particles at shallower depth, reducing the
likelihood for particles to penetrate deep into the ocean. Reported values of particle sinking velocities suggest that
they sink predominantly at velocities >100md�1 (e.g., 150–200md�1 in coastal regions [Turner, 2002] and 200–
2400md�1 in theMediterranean Sea [Armstrong et al., 2009; Lee et al., 2009]). Recent studies, however, indicate that
slow-sinking particles (<10md�1) contribute significantly to particle flux in the Canary Current [Alonso-Gonzalez
et al., 2010] and in the temperate North Atlantic (NA) [Riley et al., 2012]. Average sinking velocities (ASVs) of 25–
150md�1 have been reported for the Southern Ocean [McDonnell and Buesseler, 2010]. Villa-Alfageme et al.
[2014] analyzed the contribution of slow-sinking particles to downward particle flux at different depths in the tem-
perate NA during the postbloom season and reported AVS of 60 and 90md�1 at 50 and 500m, respectively.

The speed at which particles sink through the mesopelagic is thought to increase with depth [Trull et al.,
2008]. This increase in sinking speeds is reflected in the mathematical function commonly used to describe
particle flux attenuation, the “Martin curve” [Martin et al., 1987]. Yet very few studies have measured sinking
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speed of particles in situ using, e.g., the
Marine Snow Catcher [Riley et al., 2012],
imaging of particles in viscous polyacry-
lamide gels [McDonnell and Buesseler,
2010], or Indented Rotating Sphere
sediment traps [Alonso-Gonzalez et al.,
2010]. A novel method uses the
210Po-210Pb disequilibrium in the water
column, coupled with inverse modeling
techniques and a one-box model, as
proxy to provide estimates of particle
ASVs throughout the upper mesopela-
gic (euphotic zone depth to ~500m
depth) [Villa-Alfageme et al., 2014].

We expand the limited data set by Villa-
Alfageme et al. [2014] and, using the
210Po-210Pb method, present ASV esti-
mates from both oligotrophic and
eutrophic regions in the NA during dif-

ferent stages of the bloom. We discuss the contribution of fast- and slow-sinking particles to carbon export
and the variability in ASV distributions with depth, region, and season.

2. Methods
2.1. Study Sites

We analyzed 210Po-210Pb measurements from seven cruises (PAP site: D341, JC070; Irminger and Iceland
Basins: D350 and D354; and Bermuda Atlantic Time-series Study (BATS) site: #217, #219, and #221). These
cruises covered a wide range of environment from the temperate to the oligotrophic North Atlantic (NA)
(Figure 1). The specific stations sampled during the cruises, their locations, and sampling dates are given in
Table S1 in the supporting information.

Cruise D341 took place in July and August 2009 at the Porcupine Abyssal Plain (PAP) site (48N, 16.5W) and is
described by Le Moigne et al. [2013] and Villa-Alfageme et al. [2014]. Cruise D354 was undertaken in July–
August 2010 in the Irminger Basin (IrB) and Iceland Basin (IB) in the high-latitude NA [Le Moigne et al.,
2014]. Cruise JC071 took place within 30 km of the PAP site, between 29 April and 12 May 2012 and covered
the start of the phytoplankton spring bloom.

2.2. 210Po-Derived Particulate Organic Carbon Fluxes and Average Sinking Velocity Calculations

We combined particulate and dissolved 210Po activities into a one-box model and calculated ASVs following
the methods by Villa-Alfageme et al. [2014]. This model assumes steady state; i.e., both activities and 210Po
fluxes are assumed to be constant for time scales shorter than 138 days (the half-life of 210Po). According
to their half-lives, parent 210Pb and daughter 210Po are expected to display equal total activities; however,
the downward flux of 210Po breaks the equilibrium. 210Po flux P210Poð Þis proportional to 210Pb-210Po disequili-
brium and is traditionally calculated as

dP210Po z; tð Þ
dz

¼ λ210Po atotal210Pb � atotal210Po

� �
; (1)

where λPo is the decay constant of
210Po (0.0072 d�1) and atotalPb and atotalPo are the total (seawater plus particles)

specific activities of 210Pb and 210Po, respectively [Le Moigne et al., 2013]. Alternatively, 210Po flux can also be
written in terms of sinking velocity as

P210Po ¼ aparticle210Po v zð Þ (2)

where aparticlePo is the 210Po specific activity measured in particles and v(z) is sinking velocity. If the specific
activities of total 210Pb and 210Po in both seawater (including particles) and particles are known, we can

Figure 1. Position and bathymetry map of the sampling areas in the
North Atlantic (PAP site, Irminger Basin, Iceland Basin, and BATS) show-
ing the stations sampled for Po-Pb.
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combine equations (1) and (2) and solve for sinking velocity v(z). A least squares fitting procedure allows the
calculation of sinking velocity by minimizing the difference between predicted and observed values, follow-
ing the inverse modeling approach developed by Villa-Alfageme et al. [2014].

Note that the calculated velocity is based on the 210Pb-210Po deficit caused by the particle sinking flux, imply-
ing that the calculated ASV corresponds to the average velocity of all particle sinking flux. Alternatively, other
methods such us the Marine Snow Catcher, viscous polyacrylamide gels, or Indented Rotating Sphere
sediment traps provide sinking velocities only for specific particle sizes or particle velocity classes. Hence, this
must be considered when comparing our AVS to other data.

Our inverse model [Villa-Alfageme et al., 2014] assumes that steady state may introduce a systematic bias in
systems where nonsteady state conditions prevail. In order to assess the validity of the approach and
estimate any systematic errors, we performed a sensitivity test by including a constant variation in activity
with time (Non Steady State (NSS) term) in the inverse model algorithm. We assume, for instance, a varia-
tion in the activity with time of 10% every 15 days, with the variation being either positive (NSS+; i.e., activ-
ities increased over time) or negative (NSS�; i.e., activities decreased over time) for every depth. This is a
worst-case scenario. For the NSS sensitivity analysis we selected two adjacent stations in the Iceland
Basin that were sampled 27 days apart (Figure S3). The modified best fit parameters indicate that ASVs
would be changed between 10% and 20% from Steady State (SS) to NSS, which is within the experimental
uncertainties of the model. Therefore, assuming steady state in a nonsteady state situation does not affect
our results significantly over the associated uncertainties.

2.3. 210Po and 210Pb Measurement

We analyzed total 210Po and 210Pb in the temperate NA (PAP, IrB, and IB) following the GEOTRACES protocol
[GEOTRACES Standards and Intercalibration Committee, 2010]. Alpha counting was performed at Centro de
Investigación, Tecnología e Innovación, Universidad de Sevilla, using a Passivated Implanted Planar Silicon-
type alpha detector (Canberra). Uncertainties were estimated by error propagation. Background and 210Po
and 210Pb decay corrections were carried out (details of the corrections, spikes, and calculation of the radio-
chemical yields are given in Le Moigne et al. [2013] and Villa-Alfageme et al. [2014]).

Particulate matter was sampled using an in situ Stand-Alone Pumping System. 1500–2000 L of seawater was
filtered onto 53μm and 1μmNitex screens. Particles were washed off using MiliQ water and the solution split
for subsequent 210Po and 210Pb analysis. The analysis was performed following the same protocol as for
water analysis [Le Moigne et al., 2013].

For the oligotrophic NA (BATS), measurement methodology and sampling strategy for 210Po and 210Pb activ-
ities in particles and water are described by Stewart et al. [2010]. A thorough description of the biogeochem-
ical conditions during the cruises is provided by Brew et al. [2009].

2.4. Satellite Data

Chl a concentrations were obtained from the NASA Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite at 9 km spatial and 8 day temporal resolution (http://oceancolor.gsfc.nasa.gov/). A
time series of Chl a for all stations was created by averaging pixels within a 25 km radius of the
sampling location. Chl a concentration was converted to PP using the Vertically Generalized
Production Model algorithm [Behrenfeld and Falkowski, 1997]. Satellite time series of Chl a concentra-
tion and PP were used to differentiate the bloom stages (Figures 2 and S1). We defined the bloom
start as the day on which the Chl a value was higher than 5% of the annual median [Henson et al.,
2006; Siegel et al., 2002].

Our field campaigns sampled the main seasonal bloom in the temperate regions during two stages: (1)
bloom conditions at PAP during May 2012 and (2) the decline of the bloom at PAP during July 2009 and at
IrB and IB during July 2010. The oligotrophic BATS site was sampled three times [Brew et al., 2009; Stewart
et al., 2010] representing three different bloom stages: (1) in November 2006 well before the spring bloom,
(2) in January 2007 at the start of the spring bloom (i.e., Chl a concentration exceeded 5% but before the high-
est Chl a peak was reached), and (3) during the winter-spring bloom in March 2007.
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3. Results and Discussion
3.1. Slow-Sinking Particle Contribution

We analyzed a total of 30 depth profiles between 50 and 600m depth. ASVs ranged from 20 ± 4 to 590 ±
80md�1 and increased with depth at all sites (Figure 3). The values displayed correspond to the average
value of the sinking velocities calculated for all the stations associated with a particular cruise and one
site/basin. The ASV depth profiles, including all the depths, are detailed in Figure S2 and Table S2. There
appear to be clear temporal and depth trends. We divided ASVs into three groups according to region and
season: postbloom in the temperate NA (PAP site in July (PAPJuly), IrB and IB), bloom in the temperate NA
(PAP site in May, PAPMay), and bloom in the oligotrophic NA (BATS). We further define fast particles as those
sinking at over 100md�1 and slow particles as those that sink slower than 100md�1. Although deciding
what can be considered slow or fast based on current data is somewhat arbitrary, this choice is consistent
with previous reports: Riley et al. [2012] found that particulate organic carbon (POC) fluxes at the PAP site
could be characterized by two pools with sinking velocities of <10md�1 and >350md�1, and McDonnell
and Buesseler [2010] considered fast particles as those sinking at over 150md�1.

ASVs in the postbloom temperate NA increased with depth with 40–60md�1 at 50m, 70–80md�1 at 150m,
and 90–115md�1 at 500m. Generally, ASVs were below 100md�1 (Figure 3) implying that slowly sinking
particles contributed significantly to the particle export from the photic zone.

On the contrary, during the bloom in the temperate NA, particles sinking from the euphotic zone appeared to
be mainly fast particles, with ASVs of 130 ± 35md�1 and 330 ± 30md�1 at 150m. This is in agreement with
results from the Mediterranean Sea using Indented Rotating sphere sediment traps [Lee et al., 2009;

Figure 2. Example of time series of Chl a and PP, using the NASA MODIS satellite, from the four sampling areas, PAP09,
PAP12, IB, IrB, and BATS cruises. Complete time series are found in the supporting information.
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Wakehaman et al., 2009], where particle sinking velocities during the bloom were ranging from 200 to
500md�1 [Peterson et al., 2009]. Between 2 and 8 May, the significant differences in AVS could have been
explained by the fast-growing bloom, which might have promoted the formation of faster-sinking particles.

In the oligotrophic NA, the contribution of slow-sinking particles out of the euphotic zone was apparent both
before and during the spring bloom (January and March) with ASVs of 40 ± 10md�1 and 25± 5md�1 at
150m, respectively. These observations match the average velocities (49 ± 25md�1 at 150–300m
depth) that McDonnell et al. [2015] measured at BATS between April 2008 and September 2009. However, at
500mour ASVs in November and Januaryweremuch faster (410 ± 90md�1 and 220 ± 60md�1, respectively).

Our results suggest that slow-sinking particles contribute significantly to the POC downward flux across the
NA with exception of the temperate bloom period. In the next paragraphs we will explore what drives these
patterns. The key question is how much these slow-sinking particles contribute to ExpEff and whether the
contribution to flux remains constant in depth in oligotrophic and temperate regions.
3.1.1. Seasonal Variability in Temperate and Oligotrophic North Atlantic (NA)
We hypothesize, following Stoke’s law [De La Rocha and Passow, 2007], that the slower ASVs in the postbloom
temperate NA are due to the relative abundance of small, slowly sinking particles. They are formed in three
ways: (1) during the late stages of the bloom, nutrients are depleted and phytoplankton community structure
shifts to smaller species [Moore et al., 2005]; (2) toward the end of the bloom there may bemore efficient recy-
cling of particles in the upper ocean which could, through disaggregation, result in smaller particles; and/or
(3) particles are broken and consumed by mesozooplankton and macrozooplankton, which occur in large
numbers later in the bloom [Giering, 2013; Wiedmann et al., 2014]. The latter mechanism, however, also pro-
duces fast-sinking fecal pellets whose presence likely increases ASVs. Whether mesozooplankton and macro-
zooplankton activity increases or decreases ASVs depends on the balance between particle fragmentation
and fecal pellet production. In any case, the slow ASVs observed in the postbloom temperature NA are likely
caused by a combination of the three mechanisms.

During the spring bloom at the PAP site (MayPAP), surface ASVs are the highest observed during this study
(Figures 3 and S2 and Table S2) and sinking velocities at 150m and 200m were remarkably high (130 ±
35md�1 and 330± 30md�1). We have no direct information about the origin of the sinking material.
However, it is likely that sinking particles during the spring bloom in the temperate NA were generated pri-
marily by phytoplankton aggregation processes unrelated to zooplankton. This is because the phytoplankton
population likely has grown rapidly enough to outcompete their zooplankton grazers [Herndl and Reinthaler,
2013; Martin et al., 2011]. Diatoms, which are often associated with temperature blooms [Martin et al., 2011],

Figure 3. Average sinking velocities (AVS in m d�1) between 50 and 70m depth (blue), 150–200m depth (white), and
400–500m depth (green), calculated at the PAP site, in Irminger and Iceland Basin, and at the BATS site. Error bars show
standard deviation of ASVs for all averaged stations at any one location.
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typically have cell diameters between ~10 to 70μm [Moore et al., 2005]. Following Stoke’s law [De La Rocha
and Passow, 2007], individual diatom cell sinking velocity should be ranging from 1 to 50md�1. According to
our results, however, ASVs in the spring bloom were much faster, indicating that the high concentration
of phytoplankton cells triggered the formation of larger aggregates that sink faster than individual cells
[De La Rocha and Passow, 2007; Kiorboe, 2001; Shatova et al., 2012]. Indeed, Martin et al. [2011] observed
that export during the IrB spring bloom was driven by fast-sinking diatom aggregates that formed in the
presence of transparent exopolymer particles released during silica limitation and that were not grazed by
zooplankton.

When the ASVs during the bloom of the temperate (PAPMay) and the oligotrophic NA (BATS March) are com-
pared, the fast ASVs at the PAP site contrast strongly with the slow ASVs (<65md�1) at BATS. We believe that
during the bloom, particle composition and the community structure likely played a decisive role in control-
ling ASVs. Oligotrophic BATS is a low seasonality ecosystem regularly dominated by picophytoplankton due
to low macronutrients and high surface ocean temperature [Durkin et al., 2015; Steinberg et al., 2001]. This
results in relatively low but constant rates of PP and carbon export rates [Steinberg et al., 2001] and, likely,
a tightly coupled food web. The abundance of small (<3μm) Synechococcus and picoeukaryotes was mea-
sured at BATS during our three cruises and found to be most abundant during the March bloom [Brew
et al., 2009]. The presence of small cells coupled to a short food web likely prevented the production of large,
fast-sinking particles. These conditions could therefore explain our observed ASVs, which were consistently
low at both 70m (ASV= 50, 30, and 20md�1 in November, January, and March, respectively) and 150m
depth (ASV= 100, 40, and 25md�1, respectively). Moreover, the lowest ASVs were observed during the
bloom (Table S2), when Synechococcus was dominating the phytoplankton community. We conclude that
the phytoplankton community composition strongly influenced the initial particle sinking velocity of parti-
cles exiting the euphotic zone.

3.2. Vertical Variability: Increasing ASV With Depth

Our results are the first to show that there is a systematic increase of ASV with depth throughout the year and
across the NA (Figure 3). Three possible biogeochemical mechanisms to explain an increase of ASV with
depth have been suggested: (i) shallow remineralization of slow-sinking particles as they take more time
to reach depth relative to fast-sinking particles [McDonnell et al., 2015]; (ii) preferential remineralization of
the organic fraction of larger particles and aggregates with the result of denser and faster particles
[Armstrong et al., 2009]; (iii) aggregation in the upper mesopelagic zone, potentially including ballasting
biominerals, that results in faster sinking speeds; and (iv) repackaging of sinkingmatter into faster aggregates
or fecal pellets by mesopelagic zooplankton. We believe that the contribution of each of these four processes
is dependent not only on the sampling site but also on the season and the community structure.

To evaluate the increase of the ASV with depth, we calculated the change of ASV between two depths (Δv) as

Δv ¼ v2 � v1
v2

(3)

where v1 and v2 are the ASVs at the shallow and deep sampling depths, respectively.

At BATS, ASVs increased dramatically with depth (Δv of up to 88% between 50 and 500m). This trend likely
resulted from the combination of mechanism (i) and (ii) as mesopelagic zooplankton abundance was rela-
tively low at this site [Steinberg et al., 2002]. Surface temperatures at BATS are relatively high (~19°C), allowing
fast remineralization of slow-sinking particles and the lighter organic fraction (e.g., lipids) in the particles. This
mechanism would allow only faster-sinking particles to reach the lower mesopelagic, leading to an overall
increase of ASV with depth.

The increase of ASVs from 50 to 150m depth at IB and PAPJuly site during the decline of the bloom (Δv of
22% and 29%, respectively) is moderate relative to the observed increase at BATS. One possible explanation
for this might be the colder temperature (~11°C), presumably leading to slower remineralization rates. Slow-
sinking particles would thus penetrate deeper into the mesopelagic before being remineralized.

During the PAP spring bloom (8 May), we observed a high increase in ASV (Δv= 44%) from 150m (330±
30md�1) to 500m depth (590 ± 80md�1). Mesopelagic temperatures are lower at PAP (~10°C) leading to
lower microbial remineralization rates compared to BATS, likely on the order of ~8%Cd�1 [Iversen and
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Ploug, 2013]. Microbial remineralization can thus not satisfactorily explain the high increase of ASV at PAP. As
described above, export was likely driven by large, fast-sinking diatom aggregates, the formation of these
aggregates promote the increase of the ASV (mechanism (iii)).

Particle sinking velocities and temperature are believed to be two of themain factors that influence the ExpEff
[Buesseler et al., 2007; Henson et al., 2015; Le Moigne et al., 2016]. There is a relationship between ExpEff, flux
attenuation, and increase of velocity with depth. A large increase in sinking velocity implies a strong flux
attenuation according to Martin’s curve [Kriest and Oschlies, 2008], and flux attenuation is connected to
ExpEff. In one of the first quantitative analyses published about flux attenuation, Buesseler et al. [2007] corre-
lated flux attenuation and sinking velocity as follows: a strong particle flux attenuation in oligotrophic subtro-
pical latitudes (compared to that in high latitudes) was associated with (i) high remineralization of the sinking
material due to faster biological degradation of sinking particles at higher temperatures and (ii) faster particle
remineralization of slower particles, typically associated with tropical water waters.

Therefore, a next step in the sinking velocity analysis would be to analyze global patterns in sinking velocities
versus ExpEff in order to determine the influence of sinking particle velocity over ExpEff and carbon
flux attenuation.

4. Conclusions

Particle flux attenuation described by Martin’s equation assumes that remineralization rate decreases linearly
with depth and/or particle sinking velocities increase linearly with depth; however, previous observations
could not detect the sinking velocity increase [Trull et al., 2008]. Here we use the radioactive Po-Pb pair to
calculate ASVs across the North Atlantic. Slow-sinking particles (<100md�1) contributed significantly to
downward flux in most locations, including temperate regions. Moreover, we found that ASVs increased with
depth at nearly all sites, with a rate of increase of about 30–90%.

During the postbloom phase in temperate systems, slow particles were likely associated with zooplankton graz-
ing. Zooplankton grazing was also one of the main drivers of the increase of ASVs with depth, together with
preferential remineralization of slow-sinking particles and the organic fraction in larger particles. High ASVs
were found during the bloom. Oligotrophic systems were dominated by slow-sinking picoplankton, and remi-
neralization of slow-sinking particles appeared to be themain driver owing to highwater temperatures promot-
ing higher microbial respiration rates. The community structure strongly influenced ASV during the bloom.

Overall, this study clearly shows that an increase in particle sinking velocities with depth is ubiquitous across
the North Atlantic and should be specifically included when trying to model particle export.
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