7 research outputs found

    Autoregulation of Cerebral Blood Flow During 3-h Continuous Cardiopulmonary Resuscitation at 27°C

    Get PDF
    Introduction: Victims of accidental hypothermia in hypothermic cardiac arrest (HCA) may survive with favorable neurologic outcome if early and continuous prehospital cardiopulmonary resuscitation (CPR) is started and continued during evacuation and transport. The efficacy of cerebral autoregulation during hypothermic CPR is largely unknown and is aim of the present experiment. Methods: Anesthetized pigs (n = 8) were surface cooled to HCA at 27°C before 3 h continuous CPR. Central hemodynamics, cerebral O2 delivery (DO2) and uptake (VO2), cerebral blood flow (CBF), and cerebral perfusion pressure (CPP) were determined before cooling, at 32°C and at 27°C, then at 15 min after the start of CPR, and hourly thereafter. To estimate cerebral autoregulation, the static autoregulatory index (sARI), and the CBF/VO2 ratio were determined. Results: After the initial 15-min period of CPR at 27°C, cardiac output (CO) and mean arterial pressure (MAP) were reduced significantly when compared to corresponding values during spontaneous circulation at 27°C (−66.7% and −44.4%, respectively), and remained reduced during the subsequent 3-h period of CPR. During the first 2-h period of CPR at 27°C, blood flow in five different brain areas remained unchanged when compared to the level during spontaneous circulation at 27°C, but after 3 h of CPR blood flow in 2 of the 5 areas was significantly reduced. Cooling to 27°C reduced cerebral DO2 by 67.3% and VO2 by 84.4%. Cerebral VO2 was significantly reduced first after 3 h of CPR. Cerebral DO2 remained unaltered compared to corresponding levels measured during spontaneous circulation at 27°C. Cerebral autoregulation was preserved (sARI > 0.4), at least during the first 2 h of CPR. Interestingly, the CBF/VO2 ratio during spontaneous circulation at 27°C indicated the presence of an affluent cerebral DO2, whereas after CPR, the CBF/VO2 ratio returned to the level of spontaneous circulation at 38°C. Conclusion: Despite a reduced CO, continuous CPR for 3 h at 27°C provided sufficient cerebral DO2 to maintain aerobic metabolism and to preserve cerebral autoregulation during the first 2-h period of CPR. This new information supports early start and continued CPR in accidental hypothermia patients during rescue and transportation for in hospital rewarming

    Cardiovascular Effects of Epinephrine During Experimental Hypothermia (32°C) With Spontaneous Circulation in an Intact Porcine Model

    Get PDF
    Aims: Rewarming from accidental hypothermia and therapeutic temperature management could be complicated by cardiac dysfunction. Although pharmacologic support is often applied when rewarming these patients, updated treatment recommendations are lacking. There is an underlying deficiency of clinical and experimental data to support such interventions and this prevents the development of clinical guidelines. Accordingly, we explored the clinical effects of epinephrine during hypothermic conditions. Materials and methods: Anesthetized pigs were immersion cooled to 32°C. Predetermined variables were compared at temperature/time-point baseline, after receiving 30 ng/kg/min and 90 ng/kg/min epinephrine infusions: (1) before and during hypothermia at 32°C, and after rewarming to 38°C (n = 7) and (2) a time-matched (5 h) normothermic control group (n = 5). Results: At 32°C, both stroke volume and cardiac output were elevated after 30 ng/kg/min administration, while systemic vascular resistance was reduced after 90 ng/kg/min. Epinephrine infusion did not alter blood flow in observed organs, except small intestine flow, and global O2 extraction rate was significantly reduced in response to 90 ng/kg/min infusion. Electrocardiographic measurements were unaffected by epinephrine infusion. Conclusion: Administration of both 30 ng/kg/min and 90 ng/kg/min at 32°C had a positive inotropic effect and reduced afterload. We found no evidence of increased pro-arrhythmic activity after epinephrine infusion in hypothermic pigs. Our experiment therefore suggests that β₁-receptor stimulation with epinephrine could be a favorable strategy for providing cardiovascular support in hypothermic patients, at core temperatures >32°C

    Rewarming With Closed Thoracic Lavage Following 3-h CPR at 27°C Failed to Reestablish a Perfusing Rhythm

    Get PDF
    Introduction: Previously, we showed that the cardiopulmonary resuscitation (CPR) for hypothermic cardiac arrest (HCA) maintained cardiac output (CO) and mean arterial pressure (MAP) to the same reduced level during normothermia (38°C) vs. hypothermia (27°C). In addition, at 27°C, the CPR for 3-h provided global O2 delivery (DO2) to support aerobic metabolism. The present study investigated if rewarming with closed thoracic lavage induces a perfusing rhythm after 3-h continuous CPR at 27°C. Materials and Methods: Eight male pigs were anesthetized, and immersion-cooled. At 27°C, HCA was electrically induced, CPR was started and continued for a 3-h period. Thereafter, the animals were rewarmed by combining closed thoracic lavage and continued CPR. Organ blood flow was measured using microspheres. Results: After cooling with spontaneous circulation to 27°C, MAP and CO were initially reduced by 37 and 58% from baseline, respectively. By 15 min after the onset of CPR, MAP, and CO were further reduced by 58 and 77% from baseline, respectively, which remained unchanged throughout the rest of the 3-h period of CPR. During CPR at 27°C, DO2 and O2 extraction rate (VO2) fell to critically low levels, but the simultaneous small increase in lactate and a modest reduction in pH, indicated the presence of maintained aerobic metabolism. During rewarming with closed thoracic lavage, all animals displayed ventricular fibrillation, but only one animal could be electro-converted to restore a short-lived perfusing rhythm. Rewarming ended in circulatory collapse in all the animals at 38°C. Conclusion: The CPR for 3-h at 27°C managed to sustain lower levels of CO and MAP sufficient to support global DO2. Rewarming accidental hypothermia patients following prolonged CPR for HCA with closed thoracic lavage is not an alternative to rewarming by extra-corporeal life support as these patients are often in need of massive cardio-pulmonary support during as well as after rewarming

    Effects of rewarming with extracorporeal membrane oxygenation to restore oxygen transport and organ blood flow after hypothermic cardiac arrest in a porcine model

    Get PDF
    We recently documented that cardiopulmonary resuscitation (CPR) generates the same level of cardiac output (CO) and mean arterial pressure (MAP) during both normothermia (38 °C) and hypothermia (27 °C). Furthermore, continuous CPR at 27 °C provides O2 delivery (ḊO2) to support aerobic metabolism throughout a 3-h period. The aim of the present study was to investigate the effects of extracorporeal membrane oxygenation (ECMO) rewarming to restore ḊO2 and organ blood flow after prolonged hypothermic cardiac arrest. Eight male pigs were anesthetized and immersion cooled to 27 °C. After induction of hypothermic cardiac arrest, CPR was started and continued for a 3-h period. Thereafter, the animals were rewarmed with ECMO. Organ blood flow was measured using microspheres. After cooling with spontaneous circulation to 27 °C, MAP and CO were initially reduced to 66 and 44% of baseline, respectively. By 15 min after the onset of CPR, there was a further reduction in MAP and CO to 42 and 25% of baseline, respectively, which remained unchanged throughout the rest of 3-h CPR. During CPR, ḊO2 and O2 uptake (V̇O2) fell to critical low levels, but the simultaneous small increase in lactate and a modest reduction in pH, indicated the presence of maintained aerobic metabolism. Rewarming with ECMO restored MAP, CO, ḊO2, and blood flow to the heart and to parts of the brain, whereas flow to kidneys, stomach, liver and spleen remained significantly reduced. CPR for 3-h at 27 °C with sustained lower levels of CO and MAP maintained aerobic metabolism sufficient to support ḊO2. Rewarming with ECMO restores blood flow to the heart and brain, and creates a “shockable” cardiac rhythm. Thus, like continuous CPR, ECMO rewarming plays a crucial role in “the chain of survival” when resuscitating victims of hypothermic cardiac arrest

    Study of the effects of 3 h of continuous cardiopulmonary resuscitation at 27°C on global oxygen transport and organ blood flow

    No full text
    Aims: Complete restitution of neurologic function after 6 h of pre-hospital resuscitation and in-hospital rewarming has been reported in accidental hypothermia patients with cardiac arrest (CA). However, the level of restitution of circulatory function during long-lasting hypothermic cardiopulmonary resuscitation (CPR) remains largely unknown. We compared the effects of CPR in replacing spontaneous circulation during 3 h at 27°C vs. 45 min at normothermia by determining hemodynamics, global oxygen transport (DO2), oxygen uptake (VO2), and organ blood flow. Methods: Anesthetized pigs (n = 7) were immersion cooled to CA at 27°C. Predetermined variables were compared: (1) Before cooling, during cooling to 27°C with spontaneous circulation, after CA and subsequent continuous CPR (n = 7), vs. (2) before CA and during 45 min CPR in normothermic pigs (n = 4). Results: When compared to corresponding values during spontaneous circulation at 38°C: (1) After 15 min of CPR at 27°C, cardiac output (CO) was reduced by 74%, mean arterial pressure (MAP) by 63%, DO2 by 47%, but organ blood flow was unaltered. Continuous CPR for 3 h maintained these variables largely unaltered except for significant reduction in blood flow to the heart and brain after 3 h, to the kidneys after 1 h, to the liver after 2 h, and to the stomach and small intestine after 3 h. (2) After normothermic CPR for 15 min, CO was reduced by 71%, MAP by 54%, and DO2 by 63%. After 45 min, hemodynamic function had deteriorated significantly, organ blood flow was undetectable, serum lactate increased by a factor of 12, and mixed venous O2 content was reduced to 18%. Conclusion: The level to which CPR can replace CO and MAP during spontaneous circulation at normothermia was not affected by reduction in core temperature in our setting. Compared to spontaneous circulation at normothermia, 3 h of continuous resuscitation at 27°C provided limited but sufficient O2 delivery to maintain aerobic metabolism. This fundamental new knowledge is important in that it encourages early and continuous CPR in accidental hypothermia victims during evacuation and transport
    corecore