3 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Peak-off-peak load shifting for optimal storage sizing in hybrid power systems using Power Pinch Analysis considering energy losses

    No full text
    The difference in electricity pricing based on the time of power use has led to load shifting from peak to off-peak hours in hybrid power systems (HPS). Apart from optimising electricity cost, shifting of the load may also change the capacity of storage in the system. Power Pinch Analysis has been recently applied to guide load shifting aiming to minimise the cost of electricity, considering the peak and off-peak electricity pricing. The HPS was assumed to be ideal with 100% efficiency, which is not achievable in actual operational condition. This work extends the study by scrutinising the effects of peak-off-peak load shifting on the capacity of storage in HPS. The effects of energy losses due to the inefficiency during power conversion, transfer and storage in the HPS are considered in developing shifting heuristics to ensure optimal storage size is achieved. Implementation of the proposed load shifting strategy on a case study demonstrates that a reduction of up to 30% in the storage size can be achieved, which led to a minimum storage cost. The distribution of peak hours’ demand to off-peak hours also successfully provide significant savings in the electricity bill
    corecore