18 research outputs found

    System of animal husbandry in Seyhan basin and how climate changes affect it

    Get PDF
    PREMISE OF THE STUDY - Previous phylogenetic studies employing molecular markers have yielded various insights into the evolutionary history across Brassicales, but many relationships between families remain poorly supported or unresolved. A recent phylotranscriptomic approach utilizing 1155 nuclear markers obtained robust estimates for relationships among 14 of 17 families. Here we report a complete family‐level phylogeny estimated using the plastid genome. METHODS - We conducted phylogenetic analyses on a concatenated data set comprising 44,926 bp from 72 plastid genes for species distributed across all 17 families. Our analysis includes three additional families, Tovariaceae, Salvadoraceae, and Setchellanthaceae, that were omitted in the previous phylotranscriptomic study. KEY RESULTS - Our phylogenetic analyses obtained fully resolved and strongly supported estimates for all nodes across Brassicales. Importantly, these findings are congruent with the topology reported in the phylotranscriptomic study. This consistency suggests that future studies could utilize plastid genomes as markers for resolving relationships within some notoriously difficult clades across Brassicales. We used this new phylogenetic framework to verify the placement of the At‐α event near the origin of Brassicaceae, with median date estimates of 31.8 to 42.8 million years ago and restrict the At‐β event to one of two nodes with median date estimates between 85 to 92.2 million years ago. These events ultimately gave rise to novel chemical defenses and are associated with subsequent shifts in net diversification rates. CONCLUSIONS - We anticipate that these findings will aid future comparative evolutionary studies across Brassicales, including selecting candidates for whole‐genome sequencing projects

    From species to trait evolution in Aethionema (Brassicaceae)

    Get PDF
    The plant family Brassicaceae (or crucifers) is an economically important group that includes many food crops (e.g. cabbages and radishes), horticultural species (e.g. Draba, Iberis, Lunaria), and model plant species (particularly Arabidopsis thaliana). Because of the fundamental importance of A. thaliana to plant biology, it makes the Brassicaceae an ideal system for comparative genomics and to test wider evolutionary, ecological and speciation hypotheses. One such hypothesis is the ‘Whole Genome Duplication Radiation Lag Time’ (WGD-RLT) model for the role of polyploidy on the evolution of important plant families such as the Brassicaceae. The WGD-RLT model indicates a higher rate of diversification of a core-group compared to its sister group, due to a lag time after a whole genome duplication event that made it possible for novel traits or geo- or ecological events to increase the core groups diversification rate. Aethionema is the species-poor sister genus of the core Brassicaceae and hence is at an important comparative position to analyse trait and genomic evolution of the species-rich core group. Aethionema species occur mainly in the western Irano-Turanian region, which is concordantly the biodiversity hotspot of the Brassicaceae family. Moreover comparing Aethionema to the Brassicaceae core group can help us to understand and test the ‘WGD-RLT’ model. However to be able to do so we first need to know more about Aethionema. In this thesis, I investigated various levels of evolutionary change (from macro, to micro to trait evolution) within the genus Aethionema, with a major focus the emerging model species Aethionema arabicum. Next generation sequencing has made it possible to use the genomes of many species in a comparative framework. However, the formation of proteins and enzymes, and in the end the phenotype of the whole plant, relies on transcription from particular regions of the genome including genes. Hence, the transcriptome makes it possible to assess the functional parts of the genome. However, the functional part of the genome not only relies on the protein coding genes. Gene regulatory elements like promoters and long non-coding RNAs function as regulators of gene expression and hence are involved in increasing or decreasing transcription. In Chapter 2 I used the transcriptome of four different Aethionema species to understand the lineage specificity of these long non-coding RNAs. Moreover in a comparison with the Brassicaceae core group and Brassicaceae’s sister family the Cleomaceae I show that although the position of long non-coding RNAs can be conserved, their sequences do not have to be. Most of the Aethionema species occur in the Irano-Turanian region, a politically instable region, making it hard for scientist to collect from. However the natural history collections made throughout the last centuries are a great resource. Combing these collections with the newest sequencing techniques, e.g. next generation sequencing, have allowed me to infer the phylogeny of ~75% of the known Aethionema species in a time calibrated and historical biogeographical framework. Hence, I was able to establish that Aethionema species likely originated from the Anatolian Diagonal and that major geological events like the uplift of the Turkish and Iranian plateau have had a hand in their speciation (Chapter 3). To examine species-level processes I sequenced and analysed transcriptomes of eight Ae. arabicum accessions coming from Cyprus, Iran and Turkey to investigate population structure, genetic diversity and local adaptation (Chapter 4). The most prominent finding was a ploidy difference between the Iranian and Turkish/Cypriotic lines, whereby the former were (allo)tetraploid and the latter diploid. The tetraploid Iranian lines seem to have one set of alleles from the Turkish/Cypriotic gene-pool. However we do not know where the other alleles come from. In addition to the differences in ploidy level there are also differences in glucosinolate defence compounds between these two populations (Iranian vs Turkish/Cypriotic), with the Iranian lines lacking the diversity and concentration of indolic glucosinolates that the Turkish/Cypriotic lines have. This chapter serves as a good resource and starting point for future research in the region, maybe by using the natural history collections that are at hand. Glucosinolates (i.e. mustard oils) are mainly made by Brassicales species, with their highest structural diversity in the Brassicaceae. In Chapter 5, I examined two Ae. arabicum lines (CYP and TUR) and their recombinant inbred lines to assess glucosinolate composition in different tissues and throughout the plants development. The levels of glucosinolates in the leaves changed when Ae. arabicum went from vegetative to a reproductive state. Moreover, a major difference in glucosinolate content (up to 10-fold) between CYP and TUR indicates a likely regulatory pathway outside of the main glucosinolate biosynthesis pathway. Multi-trait and multi-environment QTL analyses based on leaves, reproductive tissues and seeds identified a single major QTL. Fine mapping this region reduced the interval to only fifteen protein coding genes, including the two most intriguing candidates: FLOWERING LOCUS C (FLC) and the sulphate transporter SULTR2;1. These findings show an interesting correlation between development and defence. Finally, Chapter 6 gives a final discussion of this thesis and its results. It brings the different topics together, put them in a bigger picture and look forward to new research possibilities

    Study of Relationship between Occupation and Spinal Discopathy

    No full text
    Objective: Discopathy is any kind of disease in the disc and is one of the most common reasons for back pain . This research has been done in order to determine relation between job and discopathy in patients of Imam Sajad Hospital (2005) . Materials & Methods: This research had been done on medical files of 240 patients with spinal discopathy who were referred to Imam Sajad Hospital from 1996 to 2003. Data were analyses in a descriptive study. Results: Discopathy of cervical, thoracic, lumbar and more than one region, in Military job (52.9%), Medical job (8.8%), Official jobs (38.3%) personnel showed a significant difference. Therefore, the relation between site of lesion with job was signigicant. Lesion in thoracic level (T12 . L1) and job had a significant relation, too: In Military job (50%), Medical job (37.5%), Offical job (12.5%) were involved with thoracolumbar discopathy. Conclusion: Because of high incidence of discopathy in Entezami personnel and significant relationship of job with site of discopathy and in order to decreasing medical costs and minimizing length of off- days, some special methods should be considered. As different researches have shown the effect of training on improving spinal problems, posture correction methods in variable job situations and training for ergonomic principles of working are recommended for military jobs

    Flowering locus C (FLC) is a potential major regulator of glucosinolate content across developmental stages of Aethionema arabicum (brassicaceae)

    No full text
    The biochemical defense of plants can change during their life-cycle and impact herbivore feeding and plant fitness. The annual species Aethionema arabicum is part of the sister clade to all other Brassicaceae. Hence, it holds a phylogenetically important position for studying crucifer trait evolution. Glucosinolates (GS) are essentially Brassicales-specific metabolites involved in plant defense. Using two Ae. arabicum accessions (TUR and CYP) we identify substantial differences in glucosinolate profiles and quantities between lines, tissues and developmental stages. We find tissue specific side-chain modifications in aliphatic GS: methylthioalkyl in leaves, methylsulfinylalkyl in fruits, and methylsulfonylalkyl in seeds. We also find large differences in absolute glucosinolate content between the two accessions (up to 10-fold in fruits) that suggest a regulatory factor is involved that is not part of the quintessential glucosinolate biosynthetic pathway. Consistent with this hypothesis, we identified a single major multi-trait quantitative trait locus controlling total GS concentration across tissues in a recombinant inbred line population derived from TUR and CYP. With fine-mapping, we narrowed the interval to a 58 kb region containing 15 genes, but lacking any known GS biosynthetic genes. The interval contains homologs of both the sulfate transporter SULTR2;1 and FLOWERING LOCUS C. Both loci have diverse functions controlling plant physiological and developmental processes and thus are potential candidates regulating glucosinolate variation across the life-cycle of Aethionema. Future work will investigate changes in gene expression of the candidates genes, the effects of GS variation on insect herbivores and the trade-offs between defense and reproduction.</p

    Flowering locus C (FLC) is a potential major regulator of glucosinolate content across developmental stages of Aethionema arabicum (brassicaceae)

    No full text
    The biochemical defense of plants can change during their life-cycle and impact herbivore feeding and plant fitness. The annual species Aethionema arabicum is part of the sister clade to all other Brassicaceae. Hence, it holds a phylogenetically important position for studying crucifer trait evolution. Glucosinolates (GS) are essentially Brassicales-specific metabolites involved in plant defense. Using two Ae. arabicum accessions (TUR and CYP) we identify substantial differences in glucosinolate profiles and quantities between lines, tissues and developmental stages. We find tissue specific side-chain modifications in aliphatic GS: methylthioalkyl in leaves, methylsulfinylalkyl in fruits, and methylsulfonylalkyl in seeds. We also find large differences in absolute glucosinolate content between the two accessions (up to 10-fold in fruits) that suggest a regulatory factor is involved that is not part of the quintessential glucosinolate biosynthetic pathway. Consistent with this hypothesis, we identified a single major multi-trait quantitative trait locus controlling total GS concentration across tissues in a recombinant inbred line population derived from TUR and CYP. With fine-mapping, we narrowed the interval to a 58 kb region containing 15 genes, but lacking any known GS biosynthetic genes. The interval contains homologs of both the sulfate transporter SULTR2;1 and FLOWERING LOCUS C. Both loci have diverse functions controlling plant physiological and developmental processes and thus are potential candidates regulating glucosinolate variation across the life-cycle of Aethionema. Future work will investigate changes in gene expression of the candidates genes, the effects of GS variation on insect herbivores and the trade-offs between defense and reproduction.</p

    Flowering Locus C (FLC) Is a Potential Major Regulator of Glucosinolate Content across Developmental Stages of Aethionema arabicum (Brassicaceae)

    No full text
    The biochemical defense of plants can change during their life-cycle and impact herbivore feeding and plant fitness. The annual species Aethionema arabicum is part of the sister clade to all other Brassicaceae. Hence, it holds a phylogenetically important position for studying crucifer trait evolution. Glucosinolates (GS) are essentially Brassicales-specific metabolites involved in plant defense. Using two Ae. arabicum accessions (TUR and CYP) we identify substantial differences in glucosinolate profiles and quantities between lines, tissues and developmental stages. We find tissue specific side-chain modifications in aliphatic GS: methylthioalkyl in leaves, methylsulfinylalkyl in fruits, and methylsulfonylalkyl in seeds. We also find large differences in absolute glucosinolate content between the two accessions (up to 10-fold in fruits) that suggest a regulatory factor is involved that is not part of the quintessential glucosinolate biosynthetic pathway. Consistent with this hypothesis, we identified a single major multi-trait quantitative trait locus controlling total GS concentration across tissues in a recombinant inbred line population derived from TUR and CYP. With fine-mapping, we narrowed the interval to a 58 kb region containing 15 genes, but lacking any known GS biosynthetic genes. The interval contains homologs of both the sulfate transporter SULTR2;1 and FLOWERING LOCUS C. Both loci have diverse functions controlling plant physiological and developmental processes and thus are potential candidates regulating glucosinolate variation across the life-cycle of Aethionema. Future work will investigate changes in gene expression of the candidates genes, the effects of GS variation on insect herbivores and the trade-offs between defense and reproduction

    Additional file 10: Figure S11. of Positionally-conserved but sequence-diverged: identification of long non-coding RNAs in the Brassicaceae and Cleomaceae

    No full text
    Example of an analysis of collinearity and no positionally conservation of a sequentially conserved LncRNA. The example is a LncRNA conserved at the sequence level within the Brassicaceae. A) Screenshot from the PLncDB website, shown are the Arabidopsis thaliana LncRNA (green) and its nearest protein coding gene (blue). B) Screenshot from the CoGe Blast HSP. Green is the Aethionema arabicum transcript along the Ae. arabicum genome. Blue is the nearest Ae. arabicum protein coding gene. C) Screenshot from GeVo. GeVo calculates the collinearity of a query sequence with the genome of a subject organism. The query here is the nearest protein coding gene of Ae. arabicum shown in B, the subjects are Ae. arabicum and A. thaliana. The query here shows two collinear regions in A. thaliana. The position of LncRNA is shown with a green box, while the protein coding genes of A. thaliana and Ae. arabicum are shown with blue boxes. D) Zoom in of the A. thaliana region that is collinear with Ae. arabicum and corresponds with the nearest A. thaliana nearest protein coding gene shown in A. These SynFind and GeVo analyses can be redone with the following link: https://genomevolution.org/r/fmqj . (PDF 146 kb

    Developmental control and plasticity of fruit and seed dimorphism in aethionema arabicum

    No full text
    Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum. Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for themonophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity
    corecore