156 research outputs found

    The effect of group cognitive-behavioral therapy in reducing aggression in patients with thalassemia

    Get PDF
    The aim of this study was to investigate the effectiveness of cognitive-behavioral therapy (CBT) on aggression in patients with thalassemia.Methods: This is an applied study in terms of objective and it is semi-experimental due to the nature of the subject, pre-test, post-test and follow-up conducted in the control group. The sample consisted of 30 patients with thalassemia city in Bojnourd, they were selected by convenience sampling method and voluntarily participated in the study. The participants were randomly divided into two groups. The first group received cognitive - behavioral therapy and the second group received no therapy. Both groups were assessed by the pre-test, post-test, and one month follow up. The assessment tool in this study were Aggression Questionnaire AGQ. Data were analyzed using SPSS software and variance analysis with repeated measures.Findings: the results showed that there is a significant correlation between the experimental group that received cognitive behavioral therapy and the control group that received no therapy in reducing aggression. These findings have important theoretical and clinical interventions.Conclusion: The results of this study will be to assess and validate detection and more precise controls used in the treatment of aggression in children with thalassemia in clinics. As well as services (CBT) to this group of clinical population as a nonpharmacologic (NMT) are effective.Keywords: cognitive behavioral group therapy, aggression, children with thalassemi

    Investigating Rumor News Using Agreement-Aware Search

    Full text link
    Recent years have witnessed a widespread increase of rumor news generated by humans and machines. Therefore, tools for investigating rumor news have become an urgent necessity. One useful function of such tools is to see ways a specific topic or event is represented by presenting different points of view from multiple sources. In this paper, we propose Maester, a novel agreement-aware search framework for investigating rumor news. Given an investigative question, Maester will retrieve related articles to that question, assign and display top articles from agree, disagree, and discuss categories to users. Splitting the results into these three categories provides the user a holistic view towards the investigative question. We build Maester based on the following two key observations: (1) relatedness can commonly be determined by keywords and entities occurring in both questions and articles, and (2) the level of agreement between the investigative question and the related news article can often be decided by a few key sentences. Accordingly, we use gradient boosting tree models with keyword/entity matching features for relatedness detection, and leverage recurrent neural network to infer the level of agreement. Our experiments on the Fake News Challenge (FNC) dataset demonstrate up to an order of magnitude improvement of Maester over the original FNC winning solution, for agreement-aware search

    Assessment of normal hemodynamic profile of mechanical pulmonary prosthesis by doppler echocardiography: a prospective cross-sectional study

    Get PDF
    OBJECTIVES: Very few reports have described the Doppler-derived echocardiographic parameters for mechanical pulmonary valve prosthesis (MPVP). This study aims to describe the normal Doppler hemodynamic profile of MPVP using Doppler echocardiography. METHODS: The current prospective, single center observational study enrolled 108 patients who underwent pulmonary valve replacement (PVR) surgery for the first time and had a normally functioning prosthesis post-operation. The hemodynamic performance of MPVPs, considering flow dependent and flow independent parameters, was evaluated at two follow-up points, at week one and week four post-operation. All assessments were conducted by an experienced echocardiographer. RESULTS: The mean age (±SD) of the participants was 26.4 (±8.98). Tetralogy of Fallot (ToF) was the most common underlying disease leading to PVR, with a prevalence of 88. At first week post-operation, measurement of indices reported the following values (±SD): peak pressure gradient (PPG): 18.51(±7.64) mm Hg; mean pressure gradient (MPG): 10.88(±5.62) mm Hg; peak velocity (PV): 1.97(±0.43)m/s; doppler velocity index (DVI): 0.61(±18); pulmonary velocity acceleration time (PVAT): 87.35(±15.16) ms; effective orifice area (EOA): 2.98(±1.02) cm2;and effective orifice area to body surface area ratio (EOA/ BSA): 1.81(±0.62) cm2/m2. Comparing these measurements with those obtained from the second follow-up (at week four post-op) failed to hold significant difference in all values except for PVAT, which had increased from its primary value (p�=�0.038). Also, right ventricular (RV) function showed significant improvement throughout the follow up period. CONCLUSION: The findings of this study help strengthen the previously scarce data pool and better establish the normal values for Doppler hemodynamics in mechanical pulmonary prosthesis

    Design and Synthesis of Novel Bis-Imidazolyl Phenyl Butadiyne Derivatives as HCV NS5A Inhibitors

    Get PDF
    In today’s global plan to completely eradicate hepatitis C virus (HCV), the essential list of medications used for HCV treatment are direct-acting antivirals (DAAs), as interferon-sparing regimens have become the standard-of-care (SOC) treatment. HCV nonstructural protein 5A (NS5A) inhibitors are a very common component of these regimens. Food and Drug Administration (FDA)- approved NS5A inhibitors, although very potent, do not have the same potency against all eight genotypes of HCV. Therefore, this study aims to synthesize NS5A inhibitor analogues with high potency pan-genotypic activity and high metabolic stability. Starting from an NS5A inhibitor scaffold previously identified by our research group, we made several modifications. Two series of compounds were created to test the effect of changing the length and spatial conformation (para-para vs. meta-metapositioned bis-imidazole-proline-carbamate), replacing amide groups in the linker with imidazole groups, as well as different end-cap compositions and sizes. The frontrunner inhibits genotype 1b (Con1) replicon, with an EC50 value in the picomolar range, and showed high genotypic coverage with nanomolar range EC50 values against four more genotypes. This together with its high metabolic stability (t1 ⁄2 > 120 min) makes it a potential preclinical candidate

    Development of (4-Phenylamino)quinazoline Alkylthiourea Derivatives as Novel NF-κB Inhibitors

    Get PDF
    For many inflammatory diseases, new effective drugs with fewer side effects are needed. While it appears promising to target the activation of the central pro-inflammatory transcription factor NF-κB, many previously discovered agents suffered from cytotoxicity. In this study, new alkylthiourea quinazoline derivatives were developed that selectively inhibit the activation of NF-κB in macrophage-like THP−1 cells while showing low general cytotoxicity. One of the best com pounds, 19, strongly inhibited the production of IL-6 (IC50 = 0.84 µM) and, less potently, of TNFα (IC50 = 4.0 µM); in comparison, the reference compound, caffeic acid phenethyl ester (CAPE), showed IC50s of 1.1 and 11.4 µM, respectively. Interestingly, 19 was found to block the translocation of the NF-κB dimer to the nucleus, although its release from the IκB complex was unaffected. Furthermore, 19 suppressed the phosphorylation of NF-κB-p65 at Ser468 but not at Ser536; however, 19 did not inhibit any kinase involved in NF-κB activation. The only partial suppression of p65 phosphorylation might be associated with fewer side effects. Since several compounds selectively induced cell death in activated macrophage-like THP−1 cells, they might be particularly effective in various inflam matory diseases that are exacerbated by excess activated macrophages, such as arteriosclerosis and autoimmune diseases

    A Stable Biologically Motivated Learning Mechanism for Visual Feature Extraction to Handle Facial Categorization

    Get PDF
    The brain mechanism of extracting visual features for recognizing various objects has consistently been a controversial issue in computational models of object recognition. To extract visual features, we introduce a new, biologically motivated model for facial categorization, which is an extension of the Hubel and Wiesel simple-to-complex cell hierarchy. To address the synaptic stability versus plasticity dilemma, we apply the Adaptive Resonance Theory (ART) for extracting informative intermediate level visual features during the learning process, which also makes this model stable against the destruction of previously learned information while learning new information. Such a mechanism has been suggested to be embedded within known laminar microcircuits of the cerebral cortex. To reveal the strength of the proposed visual feature learning mechanism, we show that when we use this mechanism in the training process of a well-known biologically motivated object recognition model (the HMAX model), it performs better than the HMAX model in face/non-face classification tasks. Furthermore, we demonstrate that our proposed mechanism is capable of following similar trends in performance as humans in a psychophysical experiment using a face versus non-face rapid categorization task

    Thermal energy processes in direct steam generation solar systems : boiling, condensation and energy storage

    Get PDF
    Direct steam generation coupled is a promising solar-energy technology, which can reduce the growing dependency on fossil fuels. It has the potential to impact the power-generation sector as well as industrial sectors where significant quantities of process steam are required. Compared to conventional concentrated solar power systems, which use synthetic oils or molten salts as the heat transfer fluid, direct steam generation offers an opportunity to achieve higher steam temperatures in the Rankine power cycle and to reduce parasitic losses, thereby enabling improved thermal efficiencies. However, its practical implementation is associated with non-trivial challenges, which need to be addressed before such systems can become more economically competitive. Specifically, important thermal-energy processes take place during flow boiling, flow condensation and thermal-energy storage, which are highly complex, multi-scale and multi-physics in nature, and which involve phase-change, unsteady and turbulent multiphase flows in the presence of conjugate heat transfer. This paper reviews our current understanding and ability to predict these processes, and the knowledge that has been gained from experimental and computational efforts in the literature. In addition to conventional steam-Rankine cycles, the possibility of implementing organic Rankine cycle power blocks, which are relevant to lower operating temperature conditions, are also considered. This expands the focus beyond water as the working fluid, to include refrigerants also. In general, significant progress has been achieved in this space, yet there remain challenges in our capability to design and to operate high-performance and low-cost systems effectively and with confidence. Of interest are the flow regimes, heat transfer coefficients and pressure drops that are experienced during the thermal processes present in direct steam generation systems, including those occurring in the solar collectors, evaporators, condensers and relevant energy storage schemes during thermal charging and discharging. A brief overview of some energy storage options are also presented to motivate the inclusion of thermal energy storage into direct steam generation systems

    Global, regional, and national burden of epilepsy, 1990 - 2016 : a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background: Seizures and their consequences contribute to the burden of epilepsy because they can cause health loss (premature mortality and residual disability). Data on the burden of epilepsy are needed for health-care planning and resource allocation. The aim of this study was to quantify health loss due to epilepsy by age, sex, year, and location using data from the Global Burden of Diseases, Injuries, and Risk Factors Study. Methods: We assessed the burden of epilepsy in 195 countries and territories from 1990 to 2016. Burden was measured as deaths, prevalence, and disability-adjusted life-years (DALYs; a summary measure of health loss defined by the sum of years of life lost [YLLs] for premature mortality and years lived with disability), by age, sex, year, location, and Socio-demographic Index (SDI; a compound measure of income per capita, education, and fertility). Vital registrations and verbal autopsies provided information about deaths, and data on the prevalence and severity of epilepsy largely came from population representative surveys. All estimates were calculated with 95% uncertainty intervals (UIs). Interpretation: Despite the decrease in the disease burden from 1990 to 2016, epilepsy is still an important cause of disability and mortality. Standardised collection of data on epilepsy in population representative surveys will strengthen the estimates, particularly in countries for which we currently have no or sparse data and if additional data is collected on severity, causes, and treatment. Sizeable gains in reducing the burden of epilepsy might be expected from improved access to existing treatments in low-income countries and from the development of new effective drugs worldwide
    corecore