839 research outputs found

    Syrian Refugee Relief: A Recent Graduate’s Volunteer Experience

    Get PDF
    N

    Efficient Wireless Power Transfer via Magnetic Resonance Coupling Using Automated Impedance Matching Circuit

    Get PDF
    In this paper, an automated impedance matching circuit is proposed to match the impedance of the transmit and receive resonators for optimum wireless power transfer (WPT). This is achieved using a 2D open-circuited spiral antenna with magnetic resonance coupling in the low-frequency ISM band at 13.56 MHz. The proposed WPT can be adopted for a wide range of commercial applications, from electric vehicles to consumer electronics, such as tablets and smartphones. The results confirm a power transfer efficiency between the transmit and receive resonant circuits of 92%, with this efficiency being sensitive to the degree of coupling between the coupled pair of resonators

    Wide-Area Composite Load Parameter Identification Based on Multi-Residual Deep Neural Network

    Get PDF
    Accurate and practical load modeling plays a critical role in the power system studies including stability, control, and protection. Recently, wide-area measurement systems (WAMSs) are utilized to model the static and dynamic behavior of the load consumption pattern in real-time, simultaneously. In this article, a WAMS-based load modeling method is established based on a multi-residual deep learning structure. To do so, a comprehensive and efficient load model founded on combination of impedance–current–power and induction motor (IM) is constructed at the first step. Then, a deep learning-based framework is developed to understand the time-varying and complex behavior of the composite load model (CLM). To do so, a residual convolutional neural network (ResCNN) is developed to capture the spatial features of the load at different location of the large-scale power system. Then, gated recurrent unit (GRU) is used to fully understand the temporal features from highly variant time-domain signals. It is essential to provide a balance between fast and slow variant parameters. Thus, the designed structure is implemented in a parallel manner to fulfill the balance and moreover, weighted fusion method is used to estimate the parameters, as well. Consequently, an error-based loss function is reformulated to improve the training process as well as robustness in the noisy conditions. The numerical experiments on IEEE 68-bus and Iranian 95-bus systems verify the effectiveness and robustness of the proposed load modeling approach. Furthermore, a comparative study with some relevant methods demonstrates the superiority of the proposed structure. The obtained results in the worst-case scenario show error lower than 0.055% considering noisy condition and at least 50% improvement comparing the several state-of-art methods.©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Cellular Activity of \u3ci\u3eSalmonella\u3c/i\u3e Typhimurium ArtAB Toxin and Its Receptor-Binding Subunit

    Get PDF
    Salmonellosis is among the most reported foodborne illnesses in the United States. The Salmonella enterica Typhimurium DT104 phage type, which is associated with multidrug-resistant disease in humans and animals, possesses an ADP-ribosylating toxin called ArtAB. Full-length artAB has been found on a number of broad-host-range non-typhoidal Salmonella species and serovars. ArtAB is also homologous to many AB5 toxins from diverse Gram-negative pathogens, including cholera toxin (CT) and pertussis toxin (PT), and may be involved in Salmonella pathogenesis, however, in vitro cellular toxicity of ArtAB has not been characterized. artAB was cloned into E. coli and initially isolated using a histidine tag (ArtABHIS) and nickel chromatography. ArtABHIS was found to bind to African green monkey kidney epithelial (Vero) cells using confocal microscopy and to interact with glycans present on fetuin and monosialotetrahexosylganglioside (GM1) using ELISA. Untagged, or native, holotoxin (ArtAB), and the pentameric receptor-binding subunit (ArtB) were purified from E. coli using fetuin and D-galactose affinity chromatography. ArtAB and ArtB metabolic and cytotoxic activities were determined using Vero and Chinese hamster ovary (CHO) epithelial cells. Vero cells were more sensitive to ArtAB, however, incubation with both cell types revealed only partial cytotoxicity over 72 h, similar to that induced by CT. ArtAB induced a distinctive clustering phenotype on CHO cells over 72 h, similar to PT, and an elongated phenotype on Vero cells, similar to CT. The ArtB binding subunit alone also had a cytotoxic effect on CHO cells and induced morphological rounding. Results indicate that this toxin induces distinctive cellular outcomes. Continued biological characterization of ArtAB will advance efforts to prevent disease caused by non-typhoidal Salmonella

    The effectiveness of minimally-invasive corticotomy-assisted orthodontic treatment of palatally impacted canines compared to the traditional traction method in terms of treatment duration, velocity of traction movement and the associated dentoalveolar changes: A randomized controlled trial [version 1; peer review: 2 approved]

    Get PDF
    Objective: To evaluate the effectiveness of a minimally-invasive corticotomy-assisted treatment of palatally impacted canines (PICs) compared with the traditional method by evaluating treatment time, the velocity of movement, and the associated dentoalveolar changes. Materials and methods: Forty-six patients with palatally or mid-alveolar upper impacted canines were recruited and distributed into two groups: the corticotomy-assisted traction group (CAT group, mean age: 20.39±2.27 years) and the traditional treatment group (TT group, mean age: 20.26±2.17 years). The closed surgical approach was used in both study groups. The velocity of traction movement, traction duration and overall treatment duration were evaluated clinically. In addition, the bone support ratios and the amount of root resorption were assessed on cone-beam computed tomography (CBCT) images. Results: At the end of treatment, significant differences were found between the two groups regarding the velocity of traction movement, traction time, and overall treatment time (P<0.05). The mean velocity of traction movement in the CAT group was greater than the TT group (x velocity =1.15±0.35 mm/month; 0.70±0.33 mm/month, P=0.027, respectively). The duration of the active traction and the overall orthodontic treatment in the CAT group were significantly shorter than the TT group by 36% and 29%, respectively. The mean bone support ratios of the aligned canines did not differ significantly between the two groups (88% vs. 89% in the CAT and TT groups, respectively). No significant differences were found between the two groups regarding the mean amount of root resorption on the adjacent laterals (x resorption = 1.30±1.18 mm; 1.22±1.02 mm, P=0.612, in CAT and TT groups, respectively). Conclusions: The traction movement velocity of the palatally impacted canines can be increased using minimally-invasive corticotomy-assisted orthodontic treatment. The side effects of the acceleration procedure were minimal and almost similar to those of the traditional technique

    Referral Physicians’ Knowledge of Radiation Dose: A Cross-sectional Study

    Get PDF
    AIM: The purpose of the study was to evaluate the knowledge of referring physicians of general practitioners, residents, and medical specialists in Jordan and the Middle East on radiation dose and its impact on vulnerable patients. MATERIALS AND METHODS: The Institutional Review Board approved this study before data collection. A cross-sectional study employed questionnaire that was distributed to respondents (n = 293) of general practitioners, residents, specialists, and therapists. The questionnaire consisted of 29 questions. Nine questions concerned with demographics and the remaining 20 questions were divided into five sections: Radiation dose, ionizing radiation, pediatric radiation, pregnant women radiation, and radiation risks. The mean score was computed out of 20. Chi-squared test of independence was utilized to analyze each question. To compare the responses between the demographic variables groups, Kruskal–Wallis and Mann–Whitney tests were used. RESULTS: Out of the 293 respondents, 128 (43.7%) were aware of radiation. The average score of the questionnaire was 9.5 out of 20 (47.5%). Within each section, the level of knowledge varied. Physicians had the highest level of knowledge in radiation risk (85.7%) followed by ionizing radiation (62.1%). The questionnaire revealed lower levels of knowledge in the areas of pediatric radiation, pregnant women radiation, and radiation dose. The percentages of respondents, (with fair to good level of knowledge), were 47.1%, 34.5%, and 24.6%, respectively. CONCLUSION: The results of this study were consistent with previous studies that demonstrated a poor level of general knowledge in referring physicians regarding radiation dose, ionizing radiation, pediatric radiation, pregnant women radiation, and radiation risks

    An Innovative Antenna Array with High Inter Element Isolation for Sub-6 GHz 5G MIMO Communication Systems

    Get PDF
    A novel technique is shown to improve the isolation between radiators in antenna arrays. The proposed technique suppresses the surface-wave propagation and reduces substrate loss thereby enhancing the overall performance of the array. This is achieved without affecting the antenna’s footprint. The proposed approach is demonstrated on a four-element array for 5G MIMO applications. Each radiating element in the array is constituted from a 3×3 matrix of interconnected resonant elements. The technique involves (i) incorporating matching stubs within the resonant elements, (ii) framing each of the four-radiating elements inside a dot-wall, and (iii) defecting the ground plane with dielectric slots that are aligned under the dot-walls. Results show that with the proposed approach the impedance bandwidth of the array is increased by 58.82% and the improvement in the average isolation between antennas #1&2, #1&3, #1&4 are 8 dB, 14 dB, 16 dB, and 13 dB, respectively. Moreover, improvement in the antenna gain is 4.2% and the total radiation efficiency is 23.53%. These results confirm the efficacy of the technique. The agreement between the simulated and measured results is excellent. Furthermore, the manufacture of the antenna array using the proposed approach is relatively straightforward and cost effective

    Phytochemical Analysis, Antioxidant, and Antimicrobial Activities of Ducrosia flabellifolia: A Combined Experimental and Computational Approaches

    Get PDF
    Ducrosia flabellifolia Boiss. is a rare desert plant known to be a promising source of bioactive compounds. In this paper, we report for the first time the phytochemical composition and biological activities of D. flabellifolia hydroalcoholic extract by using liquid chromatography-electrospray tandem mass spectrometry (ESI-MS/MS) technique. The results obtained showed the richness of the tested extract in phenols, tannins, and flavonoids. Twenty-three phytoconstituents were identified, represented mainly by chlorogenic acid, followed by ferulic acid, caffeic acid, and sinapic acid. The tested hydroalcoholic extract was able to inhibit the growth of all tested bacteria and yeast on agar Petri dishes at 3 mg/disc with mean growth inhibition zone ranging from 8.00 ± 0.00 mm for Enterococcus cloacae (E. cloacae) to 36.33 ± 0.58 mm for Staphylococcus epidermidis. Minimal inhibitory concentration ranged from 12.5 mg/mL to 200 mg/mL and the hydroalcoholic extract from D. flabellifolia exhibited a bacteriostatic and fungistatic character. In addition, D. flabellifolia hydroalcoholic extract possessed a good ability to scavenge different free radicals as compared to standard molecules. Molecular docking studies on the identified phyto-compounds in bacterial, fungal, and human peroxiredoxin 5 receptors were performed to corroborate the in vitro results, which revealed good binding profiles on the examined protein targets. A standard atomistic 100 ns dynamic simulation investigation was used to further evaluate the interaction stability of the promising phytocompounds, and the results showed conformational stability in the binding cavity. The obtained results highlighted the medicinal use of D. flabellifolia as source of bioactive compounds, as antioxidant, antibacterial, and antifungal agent
    • …
    corecore