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Abstract—Accurate and practical load modeling plays a critical
role in the power system studies including stability, control and
protection. Recently, wide-area measurement systems (WAMS)
are utilized to model the static and dynamic behavior of the load
consumption pattern in real-time, simultaneously. In this paper,
a WAMS based load modeling method is established based on a
multi-residual deep learning structure. To do so, a comprehensive
and efficient load model founded on combination of impedance-
current-power and induction motor is constructed at the first
step. Then, a deep learning-based framework is developed to un-
derstand the time-varying and complex behavior of the composite
load model. To do so, a residual convolutional neural network
(ResCNN) is developed to capture the spatial features of the load
at different location of the large-scale power system. Then, gated
recurrent unit (GRU) is used to fully understand the temporal
features from highly variant time-domain signals. It is essential
to provide a balance between fast and slow variant parameters.
Thus, the designed structure is implemented in a parallel manner
to fulfill the balance and moreover, weighted fusion method is
used to estimate the parameters, as well. Consequently, an error-
based loss function is reformulated to improve the training pro-
cess as well as robustness in the noisy conditions. The numerical
experiments on IEEE 68-bus and Iranian 95-bus systems verify
the effectiveness and robustness of the proposed load modeling
approach. Furthermore, a comparative study with some relevant
methods demonstrate the superiority of the proposed structure.
The obtained results in the worst case scenario show error
lower than 0.055% considering noisy condition and at least 50%
improvement comparing the several state-of-art methods.

Index Terms—Composite load model, deep learning, gated
recurrent unit (GRU), pseudo-Huber loss function, residual
convolutional neural network (ResCNN).

I. INTRODUCTION

A. Motivation

LECTRICAL load modeling is essential in the analysis of
the traditional and reconstructed power systems. In load

modeling studies, the main goal is to construct a mathematical
description to describe the consumption pattern throughout
a specific time interval [1]-[3]. Due to emergence of new
concepts such as smart grids, renewable energies, active dis-
tribution networks, demand-side management, etc, electrical
load modeling has faced new challenges such as complicated
characteristics and random time variance trends [4]-[6]. This
study aims to resolve these challenges that still require a
comprehensive and general solution. In this regard, the desired
approach must have the following features:

o It must be fast and accurate to track highly variant load
characteristics.

« It must be robust to handle highly noisy conditions.

o It must have the ability to understand the spatial and
temporal features for providing suitable knowledge on
load consumption pattern.

o It must be capable to identify a large number of unknown
parameters with regards to the emergence of advanced
measurement devices such as phasor measurement units
(PMUs) and smart meters provide.

So, the main motivation of this paper is to develop a multi
residual deep network to establish a general framework for the
wide-area load parameter identification.

B. Brief Literature Review

Load modeling has been conducted in two main stages,
including 1) choosing a proper load model based on
measurement-based or physical based models, 2) designing
a parameter estimation approach to identify the selected load
model parameters [7], [8]. Physical-based models provide a
detail description of physical behavior and functioning of
electrical devices, however they are not applicable in practical
conditions due to lack of required detailed information [9],
[10]. Therefore, measurement-based load models are more
preferred as they offer more practical models. The main
principle in measurement-based models is collecting a dataset
from measurement equipment and directly implemented for
load modeling. Based on the behavior, load can be modeled as
static type or can be formulated as dynamic model. However,
composite models involve the patterns of both static and
dynamic models [11].

Figure 1 presents a classification of load modeling ap-
proaches. In this figure, various schemes for each group of
load modeling techniques are depicted. The load models in



the static category have the ability to represent the active
and reactive consumption as the functions of bus frequency
and voltage. Several models such as impedance-current-power
(Z1P), exponential and frequency dependent models are most
common static load models [12], [13]. Dynamic load models
can model the time-variant relationship between active and
reactive power based on bus voltage throughout a time interval
[14]-[16]. Induction motor (IM) and exponential recovery load
model (ERLM) are two widely used dynamic load models in
previous literature [17]. However, one single static/dynamic
model cannot fully represent a behavior of actual electrical
load. Composite load model (CLM) aggregates dynamic and
static characteristics which can sufficiently represent the actual
load model [18]. Therefore, CLM is one of the most preferable
load model in previous studies [19], [20]. To this end, this
paper proposes an approach to identify parameters of CLM.

In term of identification approach, the CLM parameter
identification approaches can be divided into three following
groups: 1) optimization-based techniques, 2) state-space model
based techniques, and 3) data-driven based approaches. In
the following, it is tried to introduce these groups in more
details with the highlights from some papers in each area.
The summary of this classification are tabulated in Table 1. In
this table, the cons and pros of each group are declared.

o Optimization-based techniques

The methods of this group firstly determine an objective
function founded on error that is the difference between mea-
surement and estimated values. Then, they employ different
techniques such as Lagrangian based algorithm [9], particle
swarm optimization [21] and heuristic search algorithm [22]
to optimize the objective function. The main disadvantages of
these approaches are related to high computational complexity
and considering only measurement data at current time. As
load consumption is a time series data that depend on the
previous time steps, ignoring last data can adversely affects
on the accuracy.

o State-space model based techniques

The approaches in this group attempt to estimate the pa-
rameters using measurement data and state-space load model.
For instance, a CLM parameter identification is formulated
as weighted least square problem in [23]. Moreover, Kalman
filter (KF) based approaches such as extended KF (EKF) and
unscented KF (UKF) are also presented in [24] and [25]
for CLM and dynamic load models parameter identification,
respectively. Generally, the correlation between the loads of
the system at various locations cannot be taken into account
in this group. So, this shortcoming considerably affects the
performance of the methods. That is why, the correlation
between loads must be observed in the methods to imrpove
their accuracy.

o Data-driven based techniques

Data-driven based approaches are fast and capable of con-
sidering the impact of load at different location, which are in-
cluded two main subcategory i.e. shallow and deep structures.
The shallow based structure such as support vector machine
(SVM) [14], artificial neural network (ANN) [26], and fuzzy
logic [27] are developed in recent years for load parameter
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Fig. 1. Load modeling approaches
Table. 1. Descriptions of CLM methods

Techniques References Attributes (+/-)
L + Easy to implement
Optllgn;;?inon [9J[’2[22]”’ - High computational burden
- Considering only data of current time
+ Detailed modeling
State-Space - .
- Does not consider the correlation
Model [23-25] b load
Based etween loads
- Complicated with huge parameters
. [2], [3], [4] | + Highly Adaptive
Dat];i;llzeréven [6], [14], + Does not need load profile
[26-28] - Sensitive to measurement noises

estimation. However, these structures are not able to properly
realize the nature and characteristics of the measurement raw
data. Also, another major shortcomings of these approaches
that makes them unsable due to their small hypothesis space
are highly sensitivity to measurement noise and suffering from
lack of generality [28]. Moreover, a large share of previously
presented approaches can only utilized for a single bus,
therefore, they are not suitable. Deep learning emergence as an
evolutionary concept in machine learning has attended a large
number of researchers due to the ability in capturing complex
and nonlinear features from the raw time signals [2], [3], [6].
A deep recurrent neural network based approach, namely long
short-term memory (LSTM) is developed in [4]. Although it
offers suitable performance, it does not have proper efficiency
in learning spatial features and noisy enviroments. Moreover,
single or multimodal LSTM networks are not fully compatible
with different dynamic behaviors for tracking various load
patterns.

Considering the presented discussion, this paper focuses
to present a data-driven based technique for CLM parameter
identification.

C. Contributions

This paper aiming to provide an accurate and fast CLM
parameter identification approach, proposes a deep residual
based structure to fully understand robust, spatial, and tem-
poral features. In the designed structure, convolutional neural
network (CNN) is used to realize the spatial features, however,
in contrast with RNN-based networks, CNN is weakened to
learn spatial features, especially in long-tailed time series
associated with high variations. To this end, firstly a CNN



unit converts to residual CNN units, then a gated recurrent
unit (GRU) as a time efficient and stronger temporal feature
learner than LSTM is added to the designed network. Then,
to make a balance between different dynamic behaviors of
the load parameter in CLM, the designed network converted
into three parallel networks and also improve the computa-
tional efficiency. Consequently, an error-based loss function
is adopted to improve the method performance in noisy
conditions. Furthermore, it can help the method to increase
its training ability.

To sum up, the main novelties of the current work are
presented as follows:

o A multi-residual deep network is developed to accurately
identify the CLM parameters through a strong spatial and
temporal learners.

o An error-based loss function is suggested to enhance
the method capability in training process which can
provide accurate estimation for CLM parameters in noisy
enviroments.

o The slow/fast dynamic behavior of CLM parameters are
realized using three parallel deep networks, which can
improve the time efficiency, as well.

D. Organizations

The organization for the following contents is as follows:
the mathematical descriptions of the wide-area CLM model
are provided in section II. Section III describes the developed
multi-residual deep network in details. The numerical results
and experiments are given in section IV. At the end, the
conclusions are drawn in section V.

II. WIDE-AREA LOAD MODELING
A. Composite Load Model

The composite load model involves the static and dynamic
components which are modeled as ZIP and IM models,
respectively. The ZIP model consists of three main parts
which are constant impedance shown as Z, constant current
shown as I, and constant power as P, that are formulated as
follows [4]:

A 1%
PAT = af (VZ) +8F (VZ>+%P (1)

A Vv
ay (VZ) + By (VZ) a2 )

where and Q7P represent active and reactive power
in the model, and af/ @ 6tp /9 and 'ytp /9 are constants
showing the percentage associated with active/reactive power,
subjected to ozf/Q + Bf/Q + "yf/Q 1. Based on ZIP
model, the static reflection of loads is dependent on the voltage
variation.

The dynamic component of the composite load model is
formulated as a three-order IM model with taking into account
of the meteorological impacts and consuming load patterns
[11]:
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where v} I st show d/g-axis transient voltage and rotor
slip as state variables, while parameters rt,, zt, !, , H' and
T,, represent rotor resistance, rotor reactance, magnetizing
reactance, motor inertia, and mechanical torque, respectively.
The IM model is described by voltage, current, and slip of
IM as the state variables, while the parameters need to be
identified are resistance/reactance of the stator/rotor, motor
inertial, and magnetizing reactance.

In addition, d/g-axis stator currents are shown by vfi /a and
computed, as:
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where d/q- axis bus voltage, stator resistance, and short-
circuit reactance are respectively depicted by u; . rt and
x%. The measured bus voltage V;! consists of d and g-axis
2
component, as (Vb‘f)2 = (ug)2 + (u!)”. Furthermore, z’,
obtains algebraically, as

xl xt
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The consuming active and reactive power of the IMs as
time-varying parameters is modeled as:
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Consequently, the consuming active and reactive power in
the composite load model are:

Piom = Pz1p + Piy

com

(1)

tom = Q%1p + QI (12)
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Fig. 2. Overall schematic on the practical implementation of the
wide-area measurement based load parameter identification

B. Conventional Load Parameter Identification

To estimate the time-varying load parameters, two
sets of parameters including load and measurable
variables are considered which denoted as ©! and
Y%, respectively. In this regard, these parameters are
Ole [rts,wts,mfn,x%,rprt,af,atQ,Btp,ﬁtQ} and
Tiy = [P, Q% . V}]. The dimension of CLM and
measured parameters by WAMS are respectively represented
by d® and d”.

In overall, the composite load model shows a function
depended on the measured variables associated with measur-
ment/process noises, ©Le = f (Y") +ex.

In the k time interval, CLM parameters can be as follows:

t—1 t—2 t—ke
63(—):@(1(_) +€@1 :6(1(_) +6(~)2:"‘:@d(_) O+e@k@

(13)
where ko represent the estimation time horizon of CLM
parameters. Similarity, the dependency of CLM parameters
and measurment variables can be describes as:

O = (15) wer = 1 (157 eys = = fy (X57) ey
14
where ky is a window length of measurement.

C. Wide-Area Load Parameter Identification

From the practical point of view, wide-area load modeling
is carried out based on the wide-area measurement systems.
Firstly, the information in the whole power system should be
send to the centralized control center. Then, the control center
organized the received data as an input for the designed data-
driven based load parameter identification block. The input
data activates the trained network. Formerly, the load parame-
ters of the system are estimated by the designed network. The
mentioned procedure is shown in Fig. 2.

The correlation of the electrical load consumption has taken
into account in the load parameter identification via WAMS.
Therefore, CLM load models are described based on ij as:

N = Fly (XXl ) (15)

The bus number is represented by ¢, while N depicts the total
number of the buses in the network.

Considering (14) and (15), CLM based on WAMS can be
formulated as follows [4]:
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An analytical model cannot estimate the parameter in (16),
therefore, this paper proposes a data-driven method to identify
the time-varying parameters.

(ot t—1
Xdy, x (ky+1),i = (de,ia Xdy i

III. WIDE-AREA CLM MODELING BASED ON
MULTI-TASK DEEP LEARNING APPROACH

In the data-driven load modeling, historical data includ-
ing Ogexie,i € R **e and Xdyx(by+1) € ROXv+D
is the basis to a_Pproximate a function with the ourput of

&exk(_ﬂ € R *ke  The data-driven structure should be
able to generate the output with minimum difference between
Ouexke,i and ©'c X kg,i. The input dataset defines as
X = @Z—k@, e @?1) 7 XZ:,’ZY’XZ;}L‘)} and the output
isY = (@ge)} in the data-driven load parameter estimation.
To design a structure to estimate CLM parameters, the squared
error loss function is usually used.

The conventional loss function is a squared error loss
function. The main shortcoming of this loss function is the
possibility of mean biased or estimation of minimum variance.
To address this issue, this paper reformulates the loss function

with a novel approach entitled as Pseudo-Huber loss function
as follows [29]:

T 5 2
c+ (Y
pw) =3 o S

t=1

—-C? (20)

where fﬁfs represents loss function and control parameter,
respectively. This loss function outputs the values lose to g
Therefore, it is prevented the large values due to producing the
straight line with the slope @ Furthermore, the performance
of the suggested loss function would not be significantly af-
fected by external factors inlcuding noises. Thus, the learning

weights 0, of each I*" layer can be obtained as:
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Moreover, the estimator of proposed pseudo-Huber loss func-
tion, fpr, is defined as follows:

_ S (XY

i 0 (X)

The efficient and well-known gradient descent based, Adam
[30] [31] is utilized to find the optimal learning weights.
That is why, the developed loss function have high degree
of robustness against various noises such as measurement and
process ones in CLM.

Although a loss function plays a key role in designing a
strong approach in time-varying CLM, it is essential to design
a network that can understand Spatio-temporal features of
time signals in the power systems. Thus, this paper presents
a multi-task residual Spatio-temporal deep consists of three
parallel parts and each part consists of four main blocks i.e.
residual CNN, GRU, fully-connected networks (FCNs), and
weight fusion blocks. The proposed structure is depicted in
Fig. 3.

You (22)

A. Arrangement of Input Dataset

In the first step, the measurement and load parameters
obtained by a generated dataset is normalized based on [32]:

- xt— Xt
X'= ——— 23
Xrlnaxinnin ( )

i

the maximum and minimum input values are shown as X} ..

and X! , respectively.

The ID time series is not sufficient for complete feature
extraction. Therefore, the representation learning technique
is applied in which the initial dataset, which is extensively
assessed using real input, is converted to 2D-vectors through

the following equation [33]:

Oy Xy
0% Y
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B. Residual CNN

In the first blocks of the designed deep network, raw data
is fed into a CNN block. The measurement and parameter
data in the previous time intervals construct a sparse and
noisy input dataset. In the first block, convolutional layers and
max-polling layers are used to extract time-varying patterns
and spatial dependency between measurement signals from
different busses in the power system. The convolutional layers

consist of multiple kernels with a size of wi x he The
~ "~~~
width  height
output of I*" convolution layer is as follows [34]:
Ofionv — fact (wfionv ® Xz + B[J) (25)

where OF2™, W™ and By ; represent output, weight matrix
, and bias matrix of the I*" convolutional layer, respectively.
Also, function f%“* and operator ® show activation function
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Fig. 3. Proposed multi-residual deep network structure for CLM
parameter estimation

and convolutional operator. As can be seen from (25), the
input measurement and load parameters are filtered based on
the activation function for the several times. Also, the input
data convolved to extract the inherent features including spatial
features (loads at different locations).

To enhance the CNN performance in capturing spatial
features, we added a residual mapping after two convolutional
layers, therefore, the output after passing through a residual
network is:

O”L(‘ES — fm _"_ XZ“SS (26)
where the output of the residual unit, mapping element, and
input of the residual units are shown by O]¢®, f™, and X[
respectively.

C. GRU

In the second blocks of three parallel structures, GRU units
are added to the designed multi-residual deep network to
capture fully temporal feature as a time-efficient version of
memory-based recurrent neural networks. GRU units as the
modified version of LSTM consist of update and reset gates.
The update gate stores the importance features throughout
a signal and realize long-term dependency, while rest gate
removes features with low weight importance by resetting
memory [3].



D. FCNs

The FCN layers are used to control the dimension of the
GRU, the three parallel FCN layers are trained in an end-
to-end manner and improve the training performance without
further machinery [34].

E. Weighted Fusion Block

In the time-varying composite model, different parameters
in static and dynamic model have a different impact on the
parameter identification performance. For example, in ZIP load
model, the parameters might be almost constant, in particu-
lar during the normal operational conditions, while dynamic
parameters could highly change during an ultra-short-term
period, such in the millisecond time period. Thus, different
influential factors could highly influence on the parameter
estimation with different behavior [35]. To this end, firstly
we designed a three parallel network, then, a fusion method
is used to construct final outputs as:

ofu — P o ofr 4 2 ® o2 4 s ® oFs 27
where O/, wP1/P2/Ps and OF1/P2/Ps show output of weight
fusion block, each parallel part of the designed Multi-residual
network weights and outputs, respectively. The output of
weight fusion block is the final output of the proposed deep
approach for CLM parameters ©// with aim of minimum
difference with with aim of minimum difference with ©F,.
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Fig. 4. The training process of the multi-residual deep network

E. Training Process

The training process is given in Fig. 4. As can be seen,
training of the designed deep learning based CLM parameter
identification is simple. Firstly, the designed network is fed by
a set of historical data, then an iterative process is conducted
to obtain a set of optimal learning weights by optimizing a
pseudo-Huber loss function and Adam algorithm.

G. Design Procedure

To provide a balance between the slow and fast variants
in the composite load model (CLM) parameters identification,
the designed structure composes of three parallel branches as
follows:

1) The first branch is trained based on the measure-

ment parameters and parameters of the ZIP model
af,ﬁf,a?-a? .

2) The second branch is trained using measurement
parameters, rotor, and stator parameters of the IM
(s, T, 75 7).

3) The last branch is trained based on the H' and z¢,.

As can be seen from Fig 1, each branch includes two residual

CNN, one GRU, and one FCN layer. To this end, the proposed

network is designed based on the following steps:

o Step 1: Initialization

Step 1.1: The input data (measurement and parameters) is
normalized based on (23).

Step 1.2: The normalized data is converted from 1D to 2D-
signals.

o Step 2: Residual CNN

Step 2.1: As above-mentioned, three parallel blocks have
been considered to provide a balance between the slow and
dynamic behavior of the parameters in the static and dynamic
model. Each block consists of two residual CNN and the
first convolutional layer converts the input to (S,4,1,1,512) (S:
samples) into the two parallel branches and the output of the
last branch (including measurement data and historical data of
H*' and zt)) form is (S,2,1,1,512). Furthermore, about 15% of
the layers are dropped out in the first residual CNN layers. The
dropout approach is a beneficial and widely used technique
to prevent overfitting as well as improve the computational
burden of the designed network.

Step 2.2: In the second residual CNN, the output of the first
residual CNN converts to the outputs with sizes (S,2,1,1,512)
into the two parallel layers (including IM rotor, IM stator,
and ZIP parameters), while the form of the outputs in the last
parallel layer is (S,2,1,1,512). In the second residual CNN
layers, about 25% of the layers are dropped.

e Step 3: GRU

Step 3.1: The outputs of residual CNN blocks are 2D signals.
Firstly, 2D signals convert to the 1D signals by using flatten
layer. Therefore, flatten layers are used to convert 2D signals to
1D signal with the size of (S,4,256), (S,4,512), and (S,2,218)
in the first, second, and third parallel layers.

Step 3.2: The 1D outputs of flattening layers are fed into the
three sets of GRU layers, each branch consists of one of the



GRU layers. The output of GRU layers is the time series with
the size of (S,128).

e Step 4: FCN

Step 4.1: The output of GRU is fed into the FCN blocks.
FCN block converts the outputs of GRU into the vectors with
size (S,64), (S,128), and (S,64) in the first, second, and third
parallel layers, respectively.

e Step 5: Output

Step 5.1: The outputs of the FCN blocks are fed into the weight
fusion block. The weight fusion block is used to concatenate
the three parts and then construct the final outputs. These
outputs are the results of CLM parameter identification.

IV. NUMERICAL EXPERIMENTS

The numerical results of the designed deep-based CLM
parameter identification structure is given in this section. The
robustness and effectiveness of the proposed multi-residual
deep network are validated using two benchmark case studies
with regards to noise impacts. For sake of the comparison, four
different data-driven approaches including multi-LSTM [4],
single LSTM [4] and 1D-CNN [36] as previously presented
deep networks and SVM [14] as shallow-based network have
been considered. Besides, to show the GRU units impacts on
the performance of the proposed approach, we consider the
designed network without GRU units and as a state-of-the-art
approach, multi-residual convolutional (MRC) approach is also
used for assessing the performance of the developed technique.

The designed network is coded in Python (TensorFlow
package) and the two datasets are gathered from MATLAB
program in a PC system with Core I7 CPU @3.00 GHz RAM.

A. Data Generation and Description

The first benchmark system considered for this study is
IEEE 68-bus system. This system involves 86 lines and 16
generators. To simulate the network, the power system toolbox
(PST) with 0.01 samples per second has been utilized [37].
Two various methods are delibrated to generate the datasets.
To illusrate the generation techngiue with an example, consider
that IEEE 68-bus system has 34 different loads which are
disconnected from the system each a time, while the data is
recored. Then, this trend is taken into account for the lines.
In other words, they also disconnected from the system while
the data is being captured. This procedure leads to generating
more than 59500 various samples from IEEE 68-bus system.
This obtained data is divided to three subsections including
training, validation and testing samples. In this regard, 70%
of the data is assigned to training stage, while 15% of samples
are considered for the validation and the remaining 15% of this
dataset is devoted to testing process. It must be noted that the
noisy data is generated based on Normal distribution function
with the mean values equaled to mean values of original data
and standard deviation equaled to 10% of the mean values.
These produced noisy samples are also considered in the
evaluation of the developed technique.

B. Evaluation Metrics

Four improtant and critical error-based metrics are con-
sidered to assess the performance of the designed network
from numerical aspects. The formulation of these indices are
brought as follows:

o Root mean square error (RMSE):

N
1 2
RMSE = | — Y!-Y; 28
N ; (Y - Y3) (28)
o Normalized root mean square error (NRMSE):
1 |1 &
_ - R VAT
NRMSE = Y \| N ; Y/ - Vi) (29)
e Mean absolute error (MAE):
1N
MAE—NZ;M ~Y;| (30)
« Mean absolute percentage error (MAE):
N
1 Y -Y;
MAPE = — L : 1
N ; 7 31)

C. Discussion on Results

Figures 5 and 6 show the comparative results of the pro-
posed method with the actual values and estimated parameters
by the MCR approach. In these figures, it can be seen that the
proposed approach follows the pattern of measured oz;) and
x!, with high degree of accuracy. This results indicate that
the proposed approach has high capabilities in this regard.

The performance of the proposed approach in terms of four
different accuracy indices with regard to the defined equations
(28)-(31) are given in Fig. 7. As can be seen from this
figure, the results validate the high accuracy of the proposed
approach.

The comparative study between the mentioned methods and
the suggested technique for the estimation of of, and z,
are given in Figs. 8 and 9. From these figures, it is clear
that the proposed approach is far more accurate than the
state-of-the-art approaches. For instance, based on Fig. 8, the
proposed approach has a higher accuracy percentage in terms
of MAPE than MRC, MLSTM, LSTM, 1D-CNN, and SVM
which are 73.14%, 77.70%, 90.42%, 93.73% and 98.35%,
respectively. Also, Fig. 9 denotes that the developed scheme
is more accurate in terms of NRMSE than SVM which its
performance is 94.80%. Also the developed scheme has better
performance than MLSTM, LSTM, and 1D-CNN which have
approximately 76.50%, 89.51%, 89.63% percentage in terms
of NRMSE respectively. The comparison between the pro-
posed approach and MRC shows the effectiveness of the GRU
units with improving accuracy significantly, about 74.20% and
69.24% based on NRMSE values in estimation of parameters,
of, and x! , respectively.



0.3515

Measured

0.351

0.3505

0.35

0.349

0.3485

0.348 L L L L L L L L L '
5 10 15 20 25 30 35 40 45 50

Samples

Fig. 5. The estimation results of o obtained by proposed method
(PM) and MRC approaches versus actual data

3.79r

Measured

3.785

3.78

xm

3.775

3.77

3.765 " s " s " s L s " )
5 10 15 20 25 30 35 40 45 50

Samples

Fig. 6. The estimation results of ;" obtained by proposed method
(PM) and MRC approaches versus actual data

0.06, 15
0.05
20.04 T10
g 2
£0.03 e
% 0.02 Zs

0.01

af pf o g2 H' R XE RY X X

T 'm

af g o 2 B R X R XUXE

0.1 10
0.08 8

5 A

7 0.06 26

=z )

B =

Z.0.04 sS4
0.02 2

P oPQ 4Q gt pt wt Rt xt xt P sP Q 4Q gt pt wt pt wt xt
ap B ol BF H Ry Xo ROXIX ap B ol B H Rg Xg ROXX

T “m s s Tr fr Pm

Fig. 7. Obtained metrics by the proposed method in wide-area load
modeling
D. Sensitivity Analysis on Parallel Structure

To analyse the effectiveness of the proposed approach
with different parallel parts, a sensitivity study is conducted.
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Fig. 9. The estimation results of ;" obtained by proposed method
(PM) in parameter identification of CLM with MRC, MLSTM.
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The results of time-varying load parameter identification for
parameter z! are depicted in Fig. 10 with regards to the
mentioned four different indices. As can be realized, the
performance of the proposed approach with three different
parts are more accurate than the scheme with 1, 2, 4, and
5 parts. With increasing number of the parts from 1 to 3, the
accuracy is enhanced. However the designed deep network
with 5 different parts shows lower accuracy than with 3 and
4 parts. For example, the proposed approach with 3 parallel
layer is significantly reduced the error in terms of MAPE
associated with 1, 2, 4, and 5 parallel layers approximately
80.32%, 63.37%, 32.41%, and 72.83%, respectively. It can be
stated that the higher number of parallel branches leads to
overfitting.

E. Sensitivity Analysis on Noise

The robustness of the proposed approach is discussed in
this subsection through a comparison with other approaches.
To this end, five different noise signals are added to the actual
values; each of them follows a Gaussian distribution with zero
mean and standard deviation of 0.005, 0.01, 0.015, 0.02, 0.025,
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and 0.03 (shown by ;). Figures 11 and 12 compared the re-
sults for estimation of !, obtained by the proposed approach,
MRC, MLSTM, and LSTM in terms of RMSE and MAPE
indices. As can be seen, the proposed approach are far more
accurate than other approaches and the results demonstrated
the robustness of the proposed approach in noisy conditions.
For instance, in highly noise condition with standard deviation
0.03, the proposed approach is more accurate than MRC,
MLSTM, and LSTM, about 64.61%, 80.91%, and 86.91%,
respectively, based on Fig. 11. From Fig. 12 it is clear that,
MAPE of the designed network, MCR, MLSTM, and LSTM
are 0.001872, 0.005689, 0.006983, and 0.01086, respectively,
in highly noise condition (a; = 0.03). These MAPE value
shows that proposed approach has improved accuracy of multi
residual convolutional neural network based CLM parameter
identification significantly, about four times better. Besides,
the error of the proposed approach in estimation of z%, are at
least 5 and 7 times less than MLSTM and LSTM, respectively.
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Fig. 13. The estimation results of H* obtained by proposed method
(PM) in parameter identification of CLM with MRC, MLSTM.
LSTM, 1D-CNN and SVM schemes in Iranian 95-bus system

E. Further Results: Iranian 95-bus Network

To verify the generality of the proposed method, the real
network of Iranian 95-bus network is considered [38]. To this
end, the proposed approach is tested on the data gathered from
this network, in which, the results obtained by the proposed
on the estimation of the H* of the load connected to the bus
63 (more information is provided in [38]). The results are
compared based on some metrics shown in Fig. 13. As can be
seen, it is clear that the designed multi-residual deep network
is superior over the compared methods. Therefore, based on
attained results on the IEEE-68 bus system and Iranian 95-bus
systems, the effectiveness as well as generality of the proposed
approach is demonstrated.

V. CONCLUSION AND FUTURE WORKS

In the power system studies, it is essetial to model the
loads with highest accuracy to achieve more precise results.
The proper load modeling procedure has two consecutive
stages which are a selecting practical load model and an



developing a powerful parameter identification scheme. In
this paper, the wide-area CLM is selected as a realistic and
practical load model. Furthermore, a fast and accurate deep
neural network, namely multi-residual deep neural network is
designed to achieve the unknown parameters. The proposed
approach benefits from a residual convolutional layers to
capture spatial and robust features of measurement signal and
used GRU unit to realize fully temporal features. To make
a balance between learning dynamic and static behavior of
CLM parameters, the proposed network is designed in three
parallel manner. The training ability and noise immunity of
the desigend technique is boosted by a reformulated error loss
function named pseudo-Huber loss function. The methodology
is assessed on two different case studies including IEEE 68-bus
and Iranian 95-bus. The results network verifies the superiority
of the proposed approach through comparison with previous
approaches such as MLSTM, LSTM, and SVM, with at least
more than 70% accuracy improvement. To address the GRU
application in the designed network, the proposed approach
is compared with MCR (the proposed approach without GRU
units) and shows at least 50% accuracy improvement. The
sensitivity analysis on noise shows the proposed is almost
robust in different noisy conditions and shows at least 3 times
less error compared with other approaches. Finally, a three
parallel structure efficiency is demonstrated by a comparative
analysis with different structure of the designed network.

The investigations on the proposed CLM parameter estima-
tion based on WAMS reveal that further explorations in the
following directions would be worthwhile:

1) Estimation of the full statistical information of the
electrical loads in from of probability density function
(PDF) instead of point estimations of load parameters.

2) Developing parameter identification models for com-
posite demand side models such as combination of
load, renewable power generations, and energy storage
devices. In this case, the number of the parameters
and the model would be change and the uncertainty
associated with renewable generations can be a serious
challenge in the modern power systems.
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