14 research outputs found

    Control of an Underactuated Double-Pendulum Overhead Crane using Improved Model Reference Command Shaping: Design, Simulation and Experiment

    Get PDF
    This paper presents a new control scheme based on model reference command shaping (MRCS) for an overhead crane, with double-pendulum mechanism effects. The approach has an advantage in achieving an accurate trolley positioning, with low hook and payload oscillations, under various desired trolley positions and parameter uncertainties, without the requirement for measurement or estimation of system parameters. These are challenging in practice. The previously developed MRCS algorithm is improved in order to reduce its design complexity, as well as to ensure that it can be augmented with a feedback controller so that a concurrent controller tuning can be realised. The combined MRCS and feedback controller is used to achieve both, precise trolley positioning, and low hook and payload oscillations. To evaluate the effectiveness and the robustness of the approach, simulations and experiments using a nonlinear model and a laboratory double-pendulum crane are carried out. Under various desired positions and parameter uncertainties that involve varying the cable lengths (payload hoisting) and the payload mass variations, the superiority of the proposed approach is confirmed by achieving higher hook and payload oscillation reductions when compared with a recently proposed feedback controller. In addition, the desired trolley positions are achieved with smoother responses

    Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome

    Get PDF
    Intragenic homozygous deletions in the Large gene are associated with a severe neuromuscular phenotype in the myodystrophy (myd) mouse. These mutations result in a virtual lack of glycosylation of α-dystroglycan. Compound heterozygous LARGE mutations have been reported in a single human patient, manifesting with mild congenital muscular dystrophy (CMD) and severe mental retardation. These mutations are likely to retain some residual LARGE glycosyltransferase activity as indicated by residual α-dystroglycan glycosylation in patient cells. We hypothesized that more severe LARGE mutations are associated with a more severe CMD phenotype in humans. Here we report a 63-kb intragenic LARGE deletion in a family with Walker-Warburg syndrome (WWS), which is characterized by CMD, and severe structural brain and eye malformations. This finding demonstrates that LARGE gene mutations can give rise to a wide clinical spectrum, similar as for other genes that have a role in the post-translational modification of the α-dystroglycan protein

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study

    Get PDF
    Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    Grey-box modelling and fuzzy logic control of a Leader-Follower robot manipulator system: A hybrid Grey Wolf-Whale Optimisation approach

    Get PDF
    This study presents the development of a grey-box modelling approach and fuzzy logic control for real time trajectory control of an experimental four degree-of-freedom Leader–Follower​ Robot (LFR) manipulator system using a hybrid optimisation algorithm, known as Grey Wolf Optimiser (GWO) - Whale Optimisation Algorithm (WOA). The approach has advantages in achieving an accurate model of the LFR manipulator system, and together with a better trajectory tracking performance. In the first instance, the white box model is formed by modelling the dynamics of the follower manipulator using the Euler–Lagrange formulation. This white-box model is then improved upon by re-tuning the model's parameters using GWO-WOA and experimental data from the real LFR manipulator system, thus forming the grey-box model. A minimum improvement of 73.9% is achieved by the grey-box model in comparison to the white-box model. In the latter part of this investigation, the developed grey-box model is used for the design, tuning and real-time implementation of a fuzzy PDI controller on the experimental LFR manipulator system. A 78% improvement in the total mean squared error is realised after tuning the membership functions of the fuzzy logic controller using GWO-WOA. Experimental results show that the approach significantly improves the trajectory tracking performance of the LFR manipulator system in terms of mean squared error, steady state error and time delay

    Optimised sliding mode control of a hexacopter: simulation and experiments

    Get PDF
    Hexacopters are a kind of unmanned aerial vehicle (UAV) with six actuators and six degrees-of-freedom motions. The control of a hexacopter drone is a critical challenge. This paper presents a nonlinear dynamical model for a hexacopter and complete control approaches based on sliding mode control theory. Furthermore, this study proposed an effective control tuning method based on an optimisation algorithm. The controller has been improved by the grey wolf optimisation (GWO) algorithm, an iteration algorithm inspired by the social hierarchy and hunting behaviour of grey wolves. The improvement of the controller has been verified both experimentally and in simulations. The performance of the sub-controller for an attitude angle was tested in a test bench, and the whole flight controller was tested in simulation hexacopters, which are highly manoeuvrable, nonlinear aerial vehicles with six independent rotors and capacity for vertical take-off and landing. This article presents a derivation of the nonlinear dynamical model for a hexacopter, which includes the aerodynamic drag, and inertia counter torques. Flight control based on sliding mode control theory, which generally shows good performance on nonlinear systems, is developed and implemented. Given the need to simultaneously tune controller parameters, two nature inspired optimisation routines (GWO and PSO) are applied and compared for effectiveness in controller tuning. Results indicate that GWO-based tuning produces superior outcomes in terms of controller performance. This is in addition to the fact that PSO parameters require tuning rather than random selection of algorithm parameters. A reduced-order physical prototype is presented for the validation of the tuning routine on the roll/pitch control. The results indicate good agreement between simulation and experimental outcomes, with about 10.4% improvement in the tracking performance of roll DOF when GWO is applied to tune the controller

    Switching to instant black coffee modulates sodium selenite-induced cataract in rats

    No full text
    The influence of daily consumption of some common beverages on the development of cataract in rats was investigated. Total phenol content was determined in the beverages and an oral standardized dose of total phenols from each beverage was given to the treated rats. Weaned male albino rats were used and divided into five groups (n=7). Rats were fed Ain 93G and administered the standardized dose of instant coffee, black tea and hibiscus beverages for 30 days. On day 14 all rats were injected with a single dose of sodium selenite (NaSeO) bodyweight, except the control groups NC (negative control, did not receive NaSeO) and PC (positive control, was already injected on day 1 of the study). The rats were continued on Ain 93G and the standardized dose for another 16 days. Positive control rats were used. Total phenols were 210, 40, and 44 mg/g dry weight gallic acid equivalent in black coffee, black tea, and hibiscus, respectively. Decreased levels (statistically significant P<0.05) of malondialdehyde, total nitric oxide, Ca-Ae, tumor necrosis factor-α, interleukin-1ÎČ, superoxide dismutase, and conversely, increased levels (statistically significant P<0.05) of total protein, reduced glutathione, catalase were found in the lenses of the coffee group compared to PC. There are co-phenol substances in the instant black coffee that promoted coffee to be the most effective beverage
    corecore