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ABSTRACT 

This paper presents a new control scheme based on model reference command shaping 

(MRCS) for an overhead crane, with double-pendulum mechanism effects. The approach has 

an advantage in achieving an accurate trolley positioning, with low hook and payload 

oscillations, under various desired trolley positions and parameter uncertainties, without the 

requirement for measurement or estimation of system parameters. These are challenging in 

practice. The previously developed MRCS algorithm is improved in order to reduce its design 

complexity, as well as to ensure that it can be augmented with a feedback controller so that a 

concurrent controller tuning can be realised. The combined MRCS and feedback controller is 

used to achieve both, precise trolley positioning, and low hook and payload oscillations. To 

evaluate the effectiveness and the robustness of the approach, simulations and experiments 

using a nonlinear model and a laboratory double-pendulum crane are carried out. Under various 

desired positions and parameter uncertainties that involve varying the cable lengths (payload 

hoisting) and the payload mass variations, the superiority of the proposed approach is 

confirmed by achieving higher hook and payload oscillation reductions when compared with a 

recently proposed feedback controller. In addition, the desired trolley positions are achieved 

with smoother responses. 

 

Keywords: Command shaping; Double-pendulum crane; Hybrid control; Model reference; 

Particle swarm optimisation 
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1. INTRODUCTION 

As worldwide industrial machine applications, cranes are exclusively used for transferring a 

variety of massive loads to various locations. In fact, most industrial cranes are considered to 

be underactuated mechanical systems, which would indicate a lower number of actuators than 

the degrees of freedom [1].  The control of such an underactuated system is complicated, 

especially when dealing with double-pendulum mechanism effects [2-3]. For a double-

pendulum overhead crane (DPOC), the hook and the payload oscillate with different oscillation 

modes (known as multimode) during transportation, whereby the simultaneous elimination of 

both oscillations is difficult [4]. This phenomenon becomes extremely challenging under 

parameter uncertainties, with varying cable lengths (payload hoisting) and payload mass 

variations that affect the oscillation frequencies, which may lead to positioning errors and 

significant payload oscillations. These result in a decrease in industrial productivity and they 

introduce a safety issue [5-7].  

Several feedback control approaches have been proposed for various types of crane to 

enable the cranes to regulate its performance, by ensuring that the actual output is closer to the 

desired response. These include adaptive control [8], nonlinear control [9-11], sliding mode 

control [12], time optimal control [13], generalised trajectory modification strategy [14], and 

fuzzy logic control [15].  For control of the DPOC, feedback control strategies that have been 

proposed were adaptive [7], linear [16], nonlinear [17-18], and intelligent [19] control 

approaches. It is known that full state feedback controllers require several sensors for 

measuring the trolley position, as well as the hook and payload oscillation angles for control 

action [20]. Nevertheless, the necessary additional sensors require an additional cost, and the 

payload angle measurements will be difficult, with different payload masses, sizes, and shapes, 

especially for the double-pendulum mechanism effects [21]. In opposition to the feedback 

control, a feedforward control has been widely utilised for the oscillation control of a DPOC 
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[2,22-23]. A two-mode input shaping technique has been mostly used when effectively applied 

to the crane [24-26]. Moreover, feedforward shapers, namely, a command shaper [27-28] and 

a smoother [29-31], with different design approaches have been investigated. Improved input 

shapers have also been proposed for an overhead crane [32] and a tower crane [33]. 

Recently, model reference command shaping (MRCS) was proposed by [34] and was 

designed by using a critically damped reference model for the oscillation control of a DPOC. 

As an alternative feedforward control, this approach did not require any oscillation feedback 

sensor. This certainly saves on the cost, especially for multimode systems [35]. Besides, an 

MRCS has another great advantage when compared to other feedforward control approaches, 

as prior knowledge of the system’s natural frequencies are not required for the design. 

Therefore, the difficulties for measurements or estimations of the system parameters can be 

avoided. Simulations and experiments on a DPOC have shown significant hook and payload 

oscillation reductions under various crane operating conditions [34]. However, this control 

approach has a major drawback, as it can only be used for oscillation control, and it does not 

have the ability to precisely drive the trolley to various desired positions. In addition, the design 

of an MRCS is challenging, for it involves complicated procedures and mathematical 

formulations. 

In order to utilise the advantage that is offered by an MRCS and to achieve an accurate 

crane positioning, a method to combine it with a feedback controller can be established. 

However, for a real-time realisation of the combined control structure, a simpler MRCS 

algorithm, with less mathematical formulations, is required. In the literature, several efforts 

have been presented for developing a hybrid (combination of feedforward and feedback) 

control strategy for a DPOC. These include input shaping with a nominal characteristic 

trajectory [36], a single input fuzzy logic controller [37], and a model reference control [38]. 

In [39], the input shaping has been augmented with two feedback controllers (i.e. proportional–
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derivative (PD) and proportional (P) controllers) for the control of the trolley position and the 

deflection of the hook. It has been found that most of the hybrid controllers were designed 

independently. For the control strategies that involved input/command shaping, they required 

prior knowledge of either the first frequency mode (i.e. the hook), or the second frequency 

mode (i.e. the payload), or both of the frequency modes (i.e. the hook and the payload) for the 

design of the control. 

This paper presents an MRCS-based control of an underactuated overhead crane, with 

double-pendulum mechanism effects, under various desired trolley positions and parameter 

uncertainties. This involved varying the cable lengths (payload hoisting) and the payload mass 

variations. In order to retain the great advantage offered by an MRCS and to achieve an 

accurate crane positioning, the previously developed MRCS scheme was improved, in order to 

reduce the design complexity and to ensure that it could be augmented with a practical feedback 

controller. To demonstrate the capability of the proposed control structure, a PID controller 

was utilised as a practical feedback controller, and the concurrent tuning of the control 

parameters was realised by using particle swarm optimisation (PSO). The proposed controller 

is called MRCS-PID, and the main difference as compared to the previous MRCS approach is 

in term of the control structure. In this case, the MRCS is a feedforward control approach, 

whereas the proposed MRCS-PID is a combined of feedforward and feedback controllers to 

achieve a precise trolley positioning and satisfactory oscillation control. 

The main contributions of this work when in comparison with the existing body of 

literature are: 

a) To the best of authors’ knowledge, this is the first work on designing a hybrid controller (a 

combined command shaper and feedback controller) for a double-pendulum crane that 

avoids the requirement for prior knowledge of the system oscillation frequencies. 
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b) The hybrid controller was designed, such that a concurrent tuning of the two controllers 

could be performed, in order to ensure optimal performance in the trolley positioning and 

the payload oscillation. In addition, the design of the previously developed MRCS algorithm 

was improved. 

Several scenarios of the DPOC that involved the desired trolley positions and the 

parameter uncertainties were considered. Simulations and experiments using an underactuated 

nonlinear model and a laboratory DPOC were conducted, so as to investigate the effectiveness 

of the proposed strategy. The accuracy of the trolley positions and the level of reductions of 

the hook and payload oscillations were analysed, and these were used to investigate the 

performance of the controller. Performance comparisons with a recently proposed control 

algorithm for a DPOC system designed using two PID controllers were also conducted, in order 

to further verify the robustness of the MRCS-PID control strategy. 

2. MODEL OF A DPOC SYSTEM 

Fig. 1 illustrates the schematic diagrams of a DPOC, without and with the varying cable lengths 

during the payload hoisting. Distance 𝑥𝑥 indicates the trolley path as it moves from the origin, 

while 𝜃𝜃1 and 𝜃𝜃2 represent the hook and the payload oscillation angles, respectively. In addition, 

𝑚𝑚, 𝑚𝑚1, 𝑚𝑚2, 𝑙𝑙1, 𝑙𝑙2, 𝑔𝑔, 𝑓𝑓𝑥𝑥, and 𝑢𝑢 denote the trolley mass, the hook mass, the payload mass, the 

hook cable length, the payload cable length, the gravitational constant, the friction coefficient 

of 𝑥𝑥, and the control force applied on the trolley, respectively. As the work considered for 

constant and varying cable lengths, dynamic equations of the DPOC under both conditions are 

presented. 

When operating without a varying cable length of 𝑙𝑙1, as illustrated in Fig. 1(a), the dynamic 

equation of the DPOC can be obtained as [2,23]: 

(𝑚𝑚 + 𝑚𝑚1 + 𝑚𝑚2)𝑥̈𝑥  + (𝑚𝑚1 + 𝑚𝑚2)[𝑙𝑙1𝜃̈𝜃1 cos𝜃𝜃1 − 𝑙𝑙1𝜃̇𝜃1
2 sin𝜃𝜃1] 



6 
 

+ 𝑚𝑚2𝑙𝑙2[𝜃̈𝜃2 cos 𝜃𝜃2 − 𝜃̇𝜃2
2 sin 𝜃𝜃2] = 𝑢𝑢 − 𝑓𝑓𝑥𝑥𝑥̇𝑥                                      (1)                                   

(𝑚𝑚1 + 𝑚𝑚2)[𝑙𝑙1𝑥̈𝑥cos𝜃𝜃1  + 𝑙𝑙1
2𝜃̈𝜃1 + 𝑔𝑔𝑙𝑙1 sin 𝜃𝜃1] 

+ 𝑚𝑚2𝑙𝑙1𝑙𝑙2[𝜃̈𝜃2 cos(𝜃𝜃1 − 𝜃𝜃2) + 𝜃̇𝜃2
2 sin(𝜃𝜃1 − 𝜃𝜃2)] = 0                               (2)                          

𝑚𝑚2𝑙𝑙2[𝑥̈𝑥 cos𝜃𝜃2  + 𝑙𝑙1𝜃̈𝜃1 cos(𝜃𝜃1 − 𝜃𝜃2) +  𝑙𝑙2𝜃̈𝜃2 −  𝑙𝑙1𝜃̇𝜃1
2 sin(𝜃𝜃1 − 𝜃𝜃2) + 𝑔𝑔 sin𝜃𝜃2] = 0        (3)         

 

        
                   (a)     (b) 

Fig. 1. A DPOC: (a) Without a varying cable length (b) With a varying cable length 

Additionally, the payload was also required to be hoisted (up or down) in practical 

operations to the desired location. With a varying cable length of 𝑙𝑙1, as illustrated in Fig. 1(b), 

the dynamic equation of the DPOC can be written as [7,40]: 

 
(𝑚𝑚 + 𝑚𝑚1 + 𝑚𝑚2)𝑥̈𝑥 + (𝑚𝑚1 + 𝑚𝑚2)[2𝑙𝑙1̇𝜃̇𝜃1 cos𝜃𝜃1 + 𝑙𝑙1𝜃̈𝜃1 cos 𝜃𝜃1 

− 𝑙𝑙1𝜃̇𝜃1
2 sin𝜃𝜃1 + 𝑙𝑙1̈ sin𝜃𝜃1] + 𝑚𝑚2𝑙𝑙2[𝜃̈𝜃2 cos 𝜃𝜃2 − 𝜃̇𝜃2

2 sin𝜃𝜃2] = 𝑢𝑢 − 𝑓𝑓𝑥𝑥𝑥̇𝑥                (4)   

(𝑚𝑚1 + 𝑚𝑚2)[𝑥̈𝑥𝑙𝑙1 cos 𝜃𝜃1 + 𝑙𝑙1
2𝜃̈𝜃1 + 𝑔𝑔𝑙𝑙1 sin𝜃𝜃1 + 2𝑙𝑙1𝑙𝑙1̇𝜃̇𝜃1] 

+ 𝑚𝑚2𝑙𝑙1𝑙𝑙2[𝜃̈𝜃2 cos(𝜃𝜃1 −𝜃𝜃2) + 𝜃̇𝜃2
2 sin(𝜃𝜃1 −𝜃𝜃2)] = 0                               (5)                             

𝑚𝑚2𝑙𝑙2[𝑥̈𝑥 cos 𝜃𝜃2 + 𝑙𝑙2𝜃̈𝜃2 + 𝑙𝑙1̈ sin(𝜃𝜃1 −𝜃𝜃2) −  𝑙𝑙1𝜃̇𝜃1
2 sin(𝜃𝜃1 −𝜃𝜃2) 

+ 𝑙𝑙1𝜃̈𝜃1 cos(𝜃𝜃1 −𝜃𝜃2) + 2𝑙𝑙1̇𝜃̇𝜃1 cos(𝜃𝜃1 −𝜃𝜃2) +  𝑔𝑔 sin𝜃𝜃2] = 0                         (6)                    
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(𝑚𝑚1 + 𝑚𝑚2)[𝑥̈𝑥 sin 𝜃𝜃1 + 𝑙𝑙1̈ − 𝑙𝑙1𝜃̇𝜃1
2 + 𝑔𝑔(1 − cos 𝜃𝜃1)] 

+ 𝑚𝑚2𝑙𝑙2[𝜃̈𝜃2 sin(𝜃𝜃1 −𝜃𝜃2) − 𝜃̇𝜃2
2 cos(𝜃𝜃1 −𝜃𝜃2)]  = 𝑢𝑢𝑙𝑙 − 𝑓𝑓𝑙𝑙𝑙𝑙1̇                          (7)    

where 𝑢𝑢𝑙𝑙 and 𝑓𝑓𝑙𝑙 denote the hoisting force and friction coefficient of 𝑙𝑙1.  

 

3. CONTROLLER DESIGNS  

This section presents the improved MRCS algorithm, which can be utilised and augmented 

with a feedback controller, in order to achieve an accurate trolley positioning, together with 

higher oscillation reductions of the hook and the payload for an underactuated DPOC. A 

practical PID feedback controller was used to demonstrate the proposed MRCS-PID control 

strategy, and a PSO with a new fitness function was introduced for the concurrent tuning of the 

controller parameters. Using the same PSO algorithm, a recently proposed feedback controller 

using two PID controllers (PID-PID) was designed and implemented for performance 

comparisons. 

3.1 MRCS-PID Control Strategy 

Without a requirement for the crane’s oscillation frequencies, the MRCS was previously 

designed as an alternative command shaper by determining an appropriate shaper, 𝐺𝐺𝑠𝑠(𝑠𝑠), a 

critically damped reference model, 𝐺𝐺𝑟𝑟(𝑠𝑠), and a DPOC model, 𝐺𝐺𝑐𝑐(𝑠𝑠), that effectively 

minimised the hook and the payload oscillations, as illustrated in Fig. 2 [34]. The concept of 

poles-zeros cancellation was used in obtaining 𝐺𝐺𝑠𝑠(𝑠𝑠). More specifically, the shaper can be 

arranged as 𝐺𝐺𝑠𝑠(𝑠𝑠) = 𝐺𝐺𝑟𝑟(𝑠𝑠) 𝐺𝐺𝑐𝑐(𝑠𝑠)−1 and formulated as: 

 

𝐺𝐺𝑠𝑠(𝑠𝑠) =
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1 + 𝑎𝑎𝑛𝑛−2𝑠𝑠𝑛𝑛−2+. . . +𝑎𝑎0

(𝑠𝑠 + 𝜔𝜔𝑟𝑟)𝑛𝑛                                    (8) 

where 𝑛𝑛 denotes the system order, 𝜔𝜔𝑟𝑟 was chosen based upon several tests, and  𝑎𝑎𝑛𝑛, 𝑎𝑎𝑛𝑛−1, 

𝑎𝑎𝑛𝑛−2, …, 𝑎𝑎0 were the design variables of 𝐺𝐺𝑠𝑠(𝑠𝑠). However, the process to obtain the complete 
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design variables of an MRCS for a DPOC involved complicated procedures and mathematical 

formulations, as this was established in previous work [34].  

 

 
Fig. 2. MRCS block diagram [34] 

In an attempt to reduce the design complexity and to ensure that it could be implemented 

together with a feedback controller, the previously developed MRCS was improved, such that 

the PSO could be utilised to solve the design variables of the command shaper, 𝐺𝐺𝑠𝑠(𝑠𝑠), as 

illustrated in Fig. 3. By adopting the same concept as the MRCS approach, appropriate values 

for the numerator, 𝐺𝐺𝑠𝑠(𝑠𝑠), as described in Eq. (8), were obtained, so that the poles of the DPOC 

could be cancelled out, and the overall system poles were only from the denominator of the 

shaper. Hence, the output value of 𝑥𝑥𝑟𝑟 can be expressed as: 

𝑥𝑥𝑟𝑟(𝑡𝑡) = �𝑎𝑎2𝑖𝑖

3

𝑖𝑖=1

𝑥𝑥2𝑖𝑖(𝑡𝑡)                                                          (9) 

where 𝑎𝑎2𝑖𝑖(𝑖𝑖 = 1,2,3) are the numerator coefficients, and 𝑥𝑥2𝑖𝑖(𝑖𝑖 = 1,2,3) are the step responses 

of 𝐺𝐺𝑠𝑠(𝑠𝑠)𝐺𝐺𝑐𝑐(𝑠𝑠). 

As the MRCS can only handle hook and payload oscillations, a feedback controller was 

required, in order to achieve an accurate trolley positioning for the various desired positions. 

In this work, the PID was designated as a feedback controller, due to its low cost, its easy 

implementation, and because it is widely used in a number of practical systems [41]. Therefore, 

a hybrid design of an improved MRCS and PID was required to achieve the optimal 
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performance for both of the objectives. As the design variables of 𝐺𝐺𝑠𝑠(𝑠𝑠), and the three PID 

parameters that needed to be obtained concurrently, the benefits of a PSO algorithm were used 

to simultaneously tune the MRCS-PID controller parameters, as depicted in Fig. 4, which 

provided an additional advantage for the proposed hybrid scheme. 

 

 
Fig. 3. PSO-based MRCS block diagram 

 
Fig. 4. A hybrid MRCS-PID control block diagram using a PSO algorithm 

With a step input of 𝑥𝑥𝑑𝑑, and based on the outputs 𝑥𝑥, 𝜃𝜃1, and 𝜃𝜃2, the PSO algorithm was 

formulated to concurrently calculate the six control parameters, which were 𝑎𝑎6, 𝑎𝑎4, and 𝑎𝑎2 for 

the MRCS, and 𝐾𝐾𝑃𝑃, 𝐾𝐾𝐼𝐼, and 𝐾𝐾𝐷𝐷 for the PID controller. When using the MRCS, 𝑥𝑥𝑑𝑑 was shaped 

as 𝑥𝑥𝑟𝑟, which was the optimal input reference for the feedback system that theoretically yielded 

the minimal hook and payload oscillations. For the feedback system, the trolley position of 𝑥𝑥 

was the only output used as a feedback signal. In the PSO, two initial parameters of the particle, 
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namely, position, 𝑋𝑋 𝑖𝑖𝑖𝑖
𝑘𝑘  and velocity, 𝑉𝑉 𝑖𝑖𝑖𝑖

𝑘𝑘  were introduced towards the searching process, where 

𝑘𝑘, 𝑖𝑖, and 𝑗𝑗 were the iteration numbers, the individual swarm, and the dimension of the particle, 

respectively. The particle 𝑖𝑖 in dimension 𝑗𝑗 for the searching optimisation process can also be 

defined as 𝑖𝑖 ∈ [1,𝜌𝜌] and 𝑗𝑗 ∈ [1,𝐷𝐷], where 𝜌𝜌 and 𝐷𝐷 were the entire population and they were 

high dimensional in a search space. Conceptually, the new particle velocity, 𝑉𝑉 𝑖𝑖𝑖𝑖
𝑘𝑘+1, was 

adjusted, according to the 𝑋𝑋 𝑖𝑖𝑖𝑖
𝑘𝑘 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖, and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑗𝑗 values, and the new particle position, 𝑋𝑋 𝑖𝑖𝑖𝑖

𝑘𝑘+1, 

was updated based on 𝑋𝑋 𝑖𝑖𝑖𝑖
𝑘𝑘  and 𝑉𝑉 𝑖𝑖𝑖𝑖

𝑘𝑘+1, as in [41-43]: 

 
𝑉𝑉 𝑖𝑖𝑖𝑖
𝑘𝑘+1 = 𝑤𝑤𝑉𝑉 𝑖𝑖𝑖𝑖

𝑘𝑘 + 𝑐𝑐1𝑟𝑟1�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑋𝑋 𝑖𝑖𝑖𝑖
𝑘𝑘 � + 𝑐𝑐2𝑟𝑟2�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑗𝑗 − 𝑋𝑋 𝑖𝑖𝑖𝑖

𝑘𝑘 �                  (10)                      

𝑋𝑋 𝑖𝑖𝑖𝑖
𝑘𝑘+1 = 𝑋𝑋 𝑖𝑖𝑖𝑖

𝑘𝑘 + 𝑉𝑉 𝑖𝑖𝑖𝑖
𝑘𝑘+1                                                       (11)                                                       

where 𝑤𝑤 was chosen for a better exploration and exploitation of the particle that began with 

0.9, and linearly decreased to 0.4 at the maximum iteration, 𝑁𝑁. Furthermore, 𝑐𝑐1 and 𝑐𝑐2 were 

cognitive and social acceleration coefficients, respectively, while 𝑟𝑟1 and 𝑟𝑟2 represented the 

random function values, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑈𝑈(0,1). For the DPOC control, 𝑋𝑋 𝑖𝑖𝑖𝑖
𝑘𝑘  can also be defined as 

{𝑎𝑎6𝑖𝑖1
𝑘𝑘 , 𝑎𝑎4𝑖𝑖2

𝑘𝑘 , 𝑎𝑎2𝑖𝑖3
𝑘𝑘 , 𝐾𝐾𝑃𝑃𝑖𝑖4

𝑘𝑘 , 𝐾𝐾𝐼𝐼𝑖𝑖5
𝑘𝑘 , and 𝐾𝐾𝐷𝐷𝑖𝑖6

𝑘𝑘 }.  

To ensure for a precise trolley positioning and higher oscillation reductions for the hook 

and payload, a fitness function, 𝐽𝐽(𝑘𝑘) that considers the relationship between the trolley position, 

the hook and payload movements, and the physical parameters of the crane was designed [16]. 

This concept was originated from the potential energy, 𝑃𝑃 = 𝑚𝑚𝑚𝑚∆ℎ and based on vertical 

distance oscillations of the DPOC system, where a vertical distance of ∆ℎ = ℎ1 + ℎ2 as shown 

in Fig. 5. The ℎ1 and ℎ2 represent the differences in heights of the hook and payload with 

respect to a reference height without oscillation, respectively. Lower values of ℎ1 and ℎ2 

indicate low hook and payload oscillations, and directly decrease the potential energy of the 

system.  
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Fig. 5. Vertical distance of hook and payload movements 

The performance of each individual particle was assessed by the fitness function and  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑗𝑗 were updated, if the particle had a minimum 𝐽𝐽(𝑘𝑘): 

𝐽𝐽(𝑘𝑘) = ��𝑥𝑥𝑟𝑟
(𝑘𝑘) − 𝑥𝑥(𝑘𝑘) + ∆ℎ�

𝑁𝑁

𝑘𝑘=1

                                                  (12) 

∆ℎ = (𝑚𝑚1 + 𝑚𝑚2)𝑔𝑔𝑙𝑙1�cos𝜃𝜃1𝑟𝑟 − cos 𝜃𝜃1
(𝑘𝑘)� + 𝑚𝑚2𝑔𝑔𝑙𝑙2�cos𝜃𝜃2𝑟𝑟 − cos 𝜃𝜃2

(𝑘𝑘)�           (13) 

where 𝜃𝜃1𝑟𝑟 = 𝜃𝜃2𝑟𝑟 = the reference (zero) angles for the hook and the payload. Therefore, the 

proposed hybrid control parameters varied according to the particle position movements. 

 

3.2 PID-PID Control Strategy 

In this section, two feedback controllers, namely, PID-PID control were combined and 

implemented for the DPOC control, and they were used for performance comparison. The 

technique was recently proposed in [16], and it had the advantage of avoiding the measurement 

of the payload motion, which is challenging in real practice. The simulation results revealed 

that the performance was comparable with a full state feedback control, thus, the real-time 

implementation would be desirable and interesting. 
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Fig. 6 shows the block diagram of the PID-PID control scheme. The separate PID feedback 

controllers were used for position and oscillation control, respectively, by using the feedback 

signals, 𝑥𝑥 and 𝜃𝜃1. Similar to the MRCS-PID control, the PSO algorithm was used to 

concurrently tune the six PID-PID control parameters, 𝐾𝐾𝑃𝑃1, 𝐾𝐾𝐼𝐼1, 𝐾𝐾𝐷𝐷1, 𝐾𝐾𝑃𝑃2, 𝐾𝐾𝐼𝐼2, and 𝐾𝐾𝐷𝐷2. A 

similar fitness function, by replacing 𝑥𝑥𝑟𝑟 to 𝑥𝑥𝑑𝑑 in Eq. (12), was used without the payload motion 

sensor. The condition of 𝜃𝜃2 = 2𝜃𝜃1, as was designed in [16], was considered for solving the 

fitness functions in Eqs. (12)-(13). In this case, 𝑋𝑋 𝑖𝑖𝑖𝑖
𝑘𝑘  was defined as {𝐾𝐾𝑃𝑃1𝑖𝑖1

𝑘𝑘 , 𝐾𝐾𝐼𝐼1𝑖𝑖2
𝑘𝑘 , 𝐾𝐾𝐷𝐷1𝑖𝑖3

𝑘𝑘 , 𝐾𝐾𝑃𝑃2𝑖𝑖4
𝑘𝑘 , 

𝐾𝐾𝐼𝐼2𝑖𝑖5
𝑘𝑘 , and 𝐾𝐾𝐷𝐷2𝑖𝑖6

𝑘𝑘 }. 

 
Fig. 6. A PID-PID control block diagram using a PSO algorithm 

 
4. IMPLEMENTATION AND RESULTS 

In this work, three scenarios that involved different operating conditions of a DPOC were 

considered: (i) various trolley positions, (ii) payload hoisting, and (iii) payload mass variations. 

The simulations were performed by using the nonlinear underactuated model of a DPOC, as 

formulated in Eqs. (1)-(7), whereas the experiments were carried out by using a laboratory 

DPOC, as shown in Fig. 7, in order to investigate the performance of the proposed MRCS-PID 

and PID-PID control strategies. The laboratory DPOC was equipped with a trolley, two cables, 

and two cylindrical loads (dimension: diameter × height) that represented the hook (0.06 m × 

0.076 m) and the payload (0.05 m × 0.055 m). Three incremental decoders with a resolution of 



13 
 

4096 pulses per rotation were used for measuring the trolley position, cable length and hook 

oscillation. In addition, a Logitech C170 camera mounted on the trolley was also used to record 

the payload motion coordinates based on the deflection of a red indicator located at the top of 

the payload. The parameters of the laboratory DPOC were: 𝑚𝑚 = 1.155 kg, 𝑚𝑚1 = 0.20 kg, 𝑚𝑚2 = 

0.10 kg, 𝑙𝑙1 = 0.30 m, 𝑙𝑙2 = 0.20 m, 𝑓𝑓𝑥𝑥 = 82 Ns/m, and 𝑔𝑔 = 9.81 m/s2. These parameters were 

also used in the simulations.  

The correctness of the nonlinear underactuated DPOC model was previously verified in 

[34], where satisfactory agreements between the simulation and the experimental results were 

obtained. All of the MRCS-PID and PID-PID control parameters that were designed in Sections 

3.1 and 3.2 were used in the simulations and in the real-time implementations, respectively. In 

order to evaluate the oscillation control performances, maximum amplitudes of the hook, 𝜃𝜃1𝑚𝑚, 

and the payload, 𝜃𝜃2𝑚𝑚, angles were measured. In addition, a mean squared error (MSE) was used 

as a performance index, where low MSE𝜃𝜃1 and MSE𝜃𝜃2 values were desirable, as they indicated 

low overall hook and payload oscillation responses, respectively. 

 
 

 
Fig. 7. A laboratory DPOC 
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4.1 Optimal Parameters of the MRCS-PID and PID-PID Control Strategies 

The MRCS-PID and PID-PID control parameters that were based on 𝑥𝑥𝑑𝑑 = 0.40 m were 

optimally obtained when using the PSO algorithm with a fitness function, as designed in 

Sections 3.1 and 3.2, respectively, upon the completion of the iteration process. The best 

practice is to select 𝜌𝜌 in between 20 to 50 particles, and with no specific limit of 𝑘𝑘 numbers 

[44]. On the other hand, in [45-46], the values of 𝑐𝑐1 and 𝑐𝑐2 were suggested as 2 to ensure that 

the particles attract and influence on the average of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖, and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑗𝑗 values. Therefore, in 

this work, 𝜌𝜌, 𝑘𝑘, 𝑐𝑐1, and 𝑐𝑐2 were set as 20, 100, 2, and 2, respectively. It can be seen that the 

control parameters varied and remained unchanged, once they reached the 51st and 54th 

iterations, as shown in Figs. 8 and 9. For the results, the final optimal MRCS-PID control 

parameters were obtained as 𝑎𝑎6 = 0.1957, 𝑎𝑎4 = 43.6252, 𝑎𝑎2 = 1063.6992, 𝐾𝐾𝑃𝑃 = 2.5602, 𝐾𝐾𝐼𝐼 = 

0.0013, and 𝐾𝐾𝐷𝐷 = 0.3555. Subsequently, the final optimal PID-PID control parameters were 

obtained as 𝐾𝐾𝑃𝑃1 = 2.2927, 𝐾𝐾𝐼𝐼1 = 0.0156, 𝐾𝐾𝐷𝐷1 = 1.0401, 𝐾𝐾𝑃𝑃2 = 1.1480, 𝐾𝐾𝐼𝐼2 = 0.5048, and 𝐾𝐾𝐷𝐷2 = 

0.1314. 

 
Fig. 8. The optimal MRCS-PID control parameters 
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Fig. 9. The optimal PID-PID control parameters 

It was important to ensure that all of the poles were in a stable region of the s-plane, 

indicating a closed-loop stable system for the implementations. From Fig. 10, the poles of the 

proposed MRCS-PID control strategy were located at 𝑝𝑝1,2 = −3.4± 𝑗𝑗0.213, 𝑝𝑝3,4 =

−3.04±𝑗𝑗0.482, 𝑝𝑝5,6 = −2.56±𝑗𝑗0.293, 𝑝𝑝7 = −0.0000517, 𝑝𝑝8,9 = −0.118±𝑗𝑗1.31, 𝑝𝑝10,11 =

−0.0142±𝑗𝑗5.25, and 𝑝𝑝12,13 = −0.0723±𝑗𝑗12.20. On the other hand, for the PID-PID control 

strategy, the poles were located at 𝑝𝑝1 = −0.006826, 𝑝𝑝2,3 = −0.3315±𝑗𝑗1.156, 𝑝𝑝4,5 =

−0.1412±𝑗𝑗5.399, and 𝑝𝑝6,7 = −0.3775±𝑗𝑗12.26, as shown in Fig. 11. These demonstrated that 

the MRCS-PID and PID-PID control parameters that were obtained by using the PSO algorithm 

provided a stable system, where all of the poles lie on the left half of the s-plane. Thus, the 

optimal control parameters, as shown in Figs. 8 and 9, were ready to be used through the 

simulation and experimental exercises. 
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Fig. 10. Pole locations of the MRCS-PID control strategy 

 

 
Fig. 11. Pole locations of the PID-PID control strategy 

4.2 Various Trolley Positions 

Initially, the performance of the proposed MRCS-PID control was investigated by the unshaped 

control that was generated only by using the PID controller (bypassing the MRCS in Fig. 4), 

in order to ensure that the trolley reached the desired position. This methodology was also 

presented in [39], so as to observe the effectiveness of an MRCS as an oscillations control. In 

Fig. 12, with the desired trolley position, 𝑥𝑥𝑑𝑑 = 0.40 m, both of the simulations (Sim) and the 

experiments (Exp) yielded a similar pattern of trolley position responses for the unshaped and 
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MRCS-PID controllers. In the experiments, the trolley reached the destination within 4.57 s 

and 6.62 s, by using the unshaped and MRCS-PID controllers, respectively. It was noted that 

the unshaped control provided a 31% faster response than the proposed strategy.  

 

 
Fig. 12. Trolley movement when 𝑥𝑥𝑑𝑑 = 0.40 m 

Unfortunately, the fast motion response of the unshaped control suffered from higher hook 

and payload oscillation responses, as presented in Figs. 13 and 14. Meanwhile, the hook and 

the payload continuously oscillated with large oscillations, even after the trolley reached the 

desired location, which then brought forth a safety concern. In the experiments, the unshaped 

control provided 𝜃𝜃1𝑚𝑚, 𝜃𝜃2𝑚𝑚, MSE𝜃𝜃1, and MSE𝜃𝜃2 being as large as 10.635º, 12.810º, 20.984, and 

46.855, respectively, whereas the proposed method provided 1.046º, 2.430º, 0.146, and 0.328, 

as shown in Fig. 14. It was found that the MRCS-PID control provided a significant oscillation 

reduction of 86.8% and 81% in 𝜃𝜃1𝑚𝑚 and 𝜃𝜃2𝑚𝑚, respectively, when compared to the unshaped 

control. Furthermore, the hook and the payload oscillations were efficiently attenuated and 

eliminated within 3 s. This has indicated that the implementation of an MRCS into a hybrid 

control strategy contributes to a significant impact in minimising both of the oscillations. 
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(a) 

 
(b) 

Fig. 13. Simulation responses of a DPOC when 𝑥𝑥𝑑𝑑 = 0.40 m: (a) Hook (b) Payload 
 
 

 
(a) 
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(b) 

Fig. 14. Experimental responses of a DPOC when 𝑥𝑥𝑑𝑑 = 0.40 m: (a) Hook (b) Payload 

The effectiveness of the MRCS-PID tracking control against various 𝑥𝑥𝑑𝑑 was next 

investigated. The trolley was required to move ±0.20 m from the position in the previous 

investigation, which were the lower (𝑥𝑥𝑑𝑑 = 0.20 m) and higher (𝑥𝑥𝑑𝑑 = 0.60 m) positions. The 

proposed MRCS-PID successfully positioned the trolley accurately, even though the controller 

parameters were kept constant, as plotted in Fig. 15. The results also showed a similar pattern 

of trolley positions throughout the simulations and the experiments. In the experiments, the 

trolley successfully reached the lower and higher positions within 5.81 s and 8.13 s, 

respectively.  

 
Fig. 15. Trolley position responses with various 𝑥𝑥𝑑𝑑 
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As a higher desired position results in a higher control input, the hook and the payload 

oscillations when 𝑥𝑥𝑑𝑑 = 0.60 m were higher than in the case when 𝑥𝑥𝑑𝑑 = 0.20 m. This can be seen 

in Figs. 16 and 17. The overall performances of the hook and the payload using different trolley 

positions are summarised in Fig. 18. The effectiveness and the robustness of the MRCS-PID 

control were further investigated, by comparing with the PID-PID control under scenarios (ii) 

and (iii), in Sections 4.3 and 4.4, respectively. 

 

 
(a) 

 
(b) 

Fig. 16. Simulation responses of a DPOC at various 𝑥𝑥𝑑𝑑: (a) Hook (b) Payload 
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(a) 

 
(b) 

Fig. 17. Experimental responses of a DPOC at various 𝑥𝑥𝑑𝑑: (a) Hook (b) Payload 
 

 
(a) 
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(b) 

Fig. 18. Performance of the controller at various 𝑥𝑥𝑑𝑑: (a) Maximum oscillation (b) Overall 

oscillation 

 

4.3 Payload Hoisting 

In this work, the effectiveness of the proposed hybrid control was evaluated for a case of 

varying cable lengths during the payload hoisting, as this operation is essential in industries. 

The same DPOC parameters as in Section 4 were used, but 𝑙𝑙1 was continuously hoisted from 

0.20 m to 0.40 m (𝑙𝑙1 = 0.20 - 0.40 m) and 𝑓𝑓𝑙𝑙 = 75 Ns/m. It was clearly noted that the payload 

reached 0.40 m in 2.09 s and 2.24 s in the simulation and in the experiment, respectively, as 

depicted in Fig. 19.  

 
Fig. 19. Varying cable lengths during the payload hoisting (𝑙𝑙1 = 0.20 - 0.40 m) 
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In these cases, the MRCS-PID control was further investigated by comparing with a PID-

PID feedback control, as shown in Fig. 6. The parameters of the MRCS-PID control remained 

unchanged, as in Fig. 8, while the PID-PID control parameters that were obtained in Fig. 9 

were used for both the simulation and the experiment implementations. Since the higher desired 

position induced the higher oscillation responses, as demonstrated in Figs. 16-18, 𝑥𝑥𝑑𝑑 = 0.60 m 

was selected as an extreme condition, in order to investigate the effectiveness and the 

robustness of the proposed method under payload hoisting. The MRCS-PID and PID-PID 

control strategies yielded the control inputs, 𝑢𝑢, as shown in Fig. 20.  

 

 
Fig. 20. Control inputs for the MRCS-PID and PID-PID control strategies 

As expected, both of the MRCS-PID and PID-PID control strategies that were using 

optimal control parameters, successfully moved the trolley to the desired location accurately, 

as shown in Fig. 21. For the MRCS-PID control when using a smoother control input, as shown 

in Fig. 20, the experimental results showed that the trolley was able to reach the desired position 

within 8.39 s. Noticeably, this response was 15.9% faster than the PID-PID control that 

required 9.98 s with a visible jerk motion, as zoomed-in Fig. 21. In addition, the smoother 

control input in the MRCS-PID control strategy resulted in a less actuator effort. 
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Fig. 21. Trolley position at 𝑙𝑙1 = 0.20 - 0.40 m 

Moreover, both of the oscillation results in the simulation and in the experimental were 

also recorded in Figs. 22 and 23, respectively. The jerk motion in the PID-PID control disrupted 

the hook oscillation over the first four seconds, as exhibited in Fig. 23(a). In contrast to the 

case in Section 4.2, the payload motion was measured experimentally in centimetres. In fact, 

the PID-PID control resulted in higher 𝜃𝜃1𝑚𝑚, 𝜃𝜃2𝑚𝑚, MSE𝜃𝜃1, and MSE𝜃𝜃2 that reached 4.922º, 5.030 

cm, 2.830, and 5.192, respectively, as recorded in Table 1. With further observations, the 

MRCS-PID achieved 2.022º, 3.920 cm, 0.217, and 0.488, with reductions of 58.9%, 22.1%, 

92.3%, and 90.6% in 𝜃𝜃1𝑚𝑚, 𝜃𝜃2𝑚𝑚, MSE𝜃𝜃1, and MSE𝜃𝜃2, respectively, when compared to the results 

of the PID-PID control. 

 

 
(a) 
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(b) 

Fig. 22. Simulation responses of a DPOC when 𝑙𝑙1 = 0.20 - 0.40 m: (a) Hook (b) Payload 
 

 
(a) 

 
(b) 

Fig. 23. Experimental responses of a DPOC when 𝑙𝑙1 = 0.20 - 0.40 m: (a) Hook (b) Payload 
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Table 1. Performance of the control strategies when 𝑙𝑙1 = 0.20 - 0.40 m 

 Method 𝜃𝜃1𝑚𝑚 𝜃𝜃2𝑚𝑚 MSE𝜃𝜃1 MSE𝜃𝜃2 

Sim 

PID-PID 1.286º 1.678º 0.078 0.149 

MRCS-PID 0.929º 1.454º 0.035 0.092 

% Reduction 27.8% 13.3% 55.1% 38.3% 

Exp 

PID-PID 4.922º 5.030 cm 2.830 5.192 
MRCS-PID 2.022º 3.920 cm 0.217 0.488 

% Reduction 58.9% 22.1% 92.3% 90.6% 
 
 
4.4 Payload Hoisting with Payload Mass Variations 

From a practical perspective, the payload changed under the circumstances of payload mass 

variations. Using 𝑥𝑥𝑑𝑑 = 0.60 m, the robustness of the MRCS-PID and the PID-PID control 

schemes was further investigated, by considering a payload, 𝑚𝑚2 = 0.20 kg, which was twice 

the amount of the previous investigation. From Fig. 24, even using a different payload mass, 

the proposed method successfully positioned the trolley at the desired position. Similarly, the 

simulation and the experimental responses showed that the PID-PID control resulted in much 

larger hook and payload oscillations, as shown in Figs. 25 and 26, respectively. The overall 

effects of the payload, 𝑚𝑚2 = 0.20 kg are recorded in Table 2. Specifically, the experimental 

results revealed that the MRCS-PID control was found to be superior at 𝜃𝜃1𝑚𝑚, 𝜃𝜃2𝑚𝑚, MSE𝜃𝜃1, and 

MSE𝜃𝜃2, with reductions of 52.7%, 36.6%, 86.4%, and 83.8%, respectively, under payload 

hoisting with a higher payload mass.  
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Fig. 24. Trolley position, with payload hoisting and a different payload mass 

 
(a) 

 
(b) 

Fig. 25. Simulation responses of a DPOC when 𝑚𝑚2 = 0.20 kg: (a) Hook (b) Payload 
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(a) 

 

 
(b) 

Fig. 26. Experimental responses of a DPOC when 𝑚𝑚2 = 0.20 kg: (a) Hook (b) Payload 
 

Table 2. Performance of the controllers when 𝑚𝑚2 = 0.20 kg 

 Method 𝜃𝜃1𝑚𝑚 𝜃𝜃2𝑚𝑚 MSE𝜃𝜃1 MSE𝜃𝜃2 

Sim 

PID-PID 1.321º 1.745º 0.085 0.176 

MRCS-PID 0.916º 1.415º 0.035 0.095 

% Reduction 30.7% 18.9% 58.8% 46% 

Exp 

PID-PID 4.834º 4.700 cm 2.190 4.034 
MRCS-PID 2.285º 2.980 cm 0.297 0.653 

% Reduction 52.7% 36.6% 86.4% 83.8% 
 

4.5 Other Control Issues 

For all scenarios, it was noted that the hook and payload oscillations obtained using the MRCS-

PID control in experiments (Figs. 14, 17, 23 and 36) were slightly larger than the simulation 

results (Figs. 13, 16, 22 and 25). This might be due to the friction which was ignored in the 
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simulation. Nevertheless, the experimental hook and payload oscillations were considerably 

small, less than 1 degree. 

By using the optimal parameters of the command shaper and the feedback controller 

obtained with the PSO, the MRCS-PID control was shown to be robust to the crane parameter 

uncertainties involving varying cable lengths and payload mass variations. Lower and 

satisfactory hook and payload oscillations were achieved under these cases as compared to 

other approaches. However, the proposed control structure especially relating to the MRCS is 

not robust to the influence of external disturbances such as wind. To handle the disturbances, 

a scheme that can automatically update the hybrid controller has to be developed. One of the 

techniques which can be explored in the future is as presented in [5,46], in which a neural 

network was used to predict and update the input shaping parameters online. 

In this work, the cable of DPOC system is considered to be rigid, with the assumption that 

it does not bend during payload swing. As described in [47], in certain cases, cable flexibility 

occurs that will exhibit flexible characteristics and introduce bending deformation during 

payload oscillation. This may result in a larger amplitude payload oscillation, similar to the 

effect of external disturbance. In addition, the natural frequency of the DPOC may also be 

affected. As the proposed MRCS-PID is designed based on optimal constant command shaper 

parameters and feedback controller gains, the system performance will be affected. In future, 

it will be interesting to explore the changes in the system dynamics of the DPOC due to the 

cable flexibility, and to design an improved MRCS controller to handle this issue. 

 
5. CONCLUSION 

A new control structure using an improved MRCS, together with a practical feedback controller 

(MRCS-PID), was designed for accurate trolley positioning and oscillation control for an 

underactuated DPOC under parameter uncertainties. The existing MRCS algorithm was 

improved, in order to reduce the design complexity and to ensure concurrent tuning with the 
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feedback controller can be performed. This was realised using the PSO algorithm, which has 

not been implemented in the existing literature. In addition, the advantage of an MRCS, which 

does not require prior knowledge of crane oscillation frequencies, was retained. The proposed 

approach was demonstrated to be robust under the parameter uncertainties, with respect to the 

changes in crane dynamics that resulted from the various desired trolley positions, the payload 

hoisting, and the payload mass variations. Under these conditions, higher reductions in the 

maximum and overall oscillations were attained when compared to the PID-PID control, in 

both of the simulations and the experiments.  It is envisaged that the improved MRCS can be 

further utilised for control of other underactuated systems with a higher system order. These 

include a multi-link flexible robot manipulator, various types of double-pendulum crane and a 

drone with a cable-suspension payload. The vibrations and oscillations occur in these systems 

involve with several modes of frequencies and damping ratios.   
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