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ABSTRACT  

This paper proposes an adaptive input shaper for swing control of a five degrees of freedom 

tower crane under various parameter uncertainties together with payload hoisting and 

simultaneous motions. The real-time adaptive mechanism is designed using neural network 

and the shaper parameters can be updated based on current crane’s parameters. This approach 

avoids the requirement for re-design of controllers as in the conventional technique.  

Experiments are conducted to assess effectiveness of the controller under challenging scenarios 

up to 100% changes in the system’s natural frequency. These involve different speeds and 

payload masses, payload hoisting, and distances of trolley and jib. Results demonstrate that the 

shaper is robust against parameter uncertainties and its superiority is confirmed with an 

improvement of at least 50% as compared to a comparative robust shaper. The shaper also 

provides a satisfactory performance under obstacle avoidance where payload lifting and 

lowering are performed within a single manoeuvre. 
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1. INTRODUCTION 

Cranes are one of the most widely used machines in industries for transportation of heavy and 

hazardous loads to a desired destination. In a construction industry, a tower crane has proved 

its usefulness for transporting heavy building materials and the small footprint with a wide 

working area makes it suitable for constructing skyscrapers. Moreover, its characteristics of 

long jib, high lifting height and heavy lifting ability are advantages in constructions of high-
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rise building, bridges and other structures. Many difficult construction tasks can be automated 

using the tower cranes which result in a faster completion time.  A five degrees of freedom (5-

DOF) tower crane involves translational motion of trolley, rotational motion of jib, payload 

hoisting up and down, and payload pendulation angles in 𝑥𝑥 and 𝑦𝑦-axes. It is an underactuated 

system as the number of actuators is less than the degree of freedom. Generally, a fast motion 

of a tower crane with minimum payload swing is highly desirable to increase productivity, and 

to ensure safety. However, efficient control of the payload sway is very challenging as the sway 

is affected by many factors. The dynamic behaviour of the crane is complicated due to a 

nonlinear coupling of the slew and translational motions, and the payload also pendulates in a 

circular pattern. Moreover, the payload swing dynamics change during essential payload 

hoisting operations as the length of cable attached to the payload varies. The magnitude of the 

payload swing is also affected by the payload mass, motion speed and distances of the trolley 

and jib movements. For example, a fourfold increase in the trolley or jib displacement doubles 

the operational time as the operator needs to wait longer time for the payload oscillation to 

settle down [1]. In addition, the control challenge increases under simultaneous trolley and jib 

motions together with payload hoisting. 

Many researchers have proposed different techniques to minimise or eliminate the 

payload swing with varying levels of success. The most notable techniques based on feedback 

control are robust control [2, 3], nonlinear control [4, 5], model predictive control [6, 7], sliding 

mode control [8, 9, 10], artificial intelligent control [11, 12, 13, 14], and adaptive control [15, 

16]. Recently, a neuroadaptive controller for a tower crane with simultaneous output and 

velocity constraints was proposed [17].  The closed-loop control schemes provide a good and 

robust performance, but they required installation of additional sensors, good mathematical 

model of the system and were difficult to implement. Besides, open loop control approaches 

that include input shaping [18, 19, 20], command smoothing [21, 22] and command filtering 

[23] techniques have also been reported. The control approach is easy to implement and does 

not need additional sensors. However, it requires an accurate dynamic model, and it is not 

robust to system uncertainties and disturbances. In addition, as the input shaping techniques 

were designed based on a linear system, their performance degraded when used for nonlinear 

and time-varying systems. It was found in the literature that most of the work reported on open 

loop control involves implementations on gantry and overhead cranes and not much on a 

rotary/tower crane. This may be due to the nonlinear nature and rotational motion of jib/boom 

which increase the difficulty for sway control.  
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For efficient sway control, a shaper that is robust to parameters that affect the sway 

magnitudes and dynamics is required. Input shapers that were robust to changes in the crane 

parameters have previously been designed in [20, 24, 25, 26]. In [27], a shaper designed based 

on the Average Operating Frequency (AOF) of initial and final cable lengths was shown to be 

more efficient in suppressing the payload oscillation. An adaptive Unity Magnitude Zero 

Vibration (UMZV) shaper which can handle changes in the crane dynamics was also proposed 

in [24]. It was found that there is a deficiency of robust shaper in the literature especially for a 

tower crane, and most of the proposed robust shaping techniques deal with the gantry and 

overhead cranes. In a recent work [20], a neural network-based adaptive input shaper was 

proposed for payload swing suppression of a tower crane. However, the work only considered 

the changes in the cable length and payload mass to update the shaper parameters. It is desirable 

to design a shaper which is robust to many factors including the trolley displacement and jib 

rotation angle. It is also a great advantage to ensure a low payload sway regardless of trolley 

displacement and jib rotation distances, and during an obstacle avoidance operation. 

In this work, an adaptive Zero Vibration Derivative (ZVD) shaper that can adapt to 

parameter uncertainties for efficient sway control of a 5-DOF tower crane is proposed. The 

shaper is based on Neural Network (NN) which has the capability to learn and predict optimal 

shaper parameters based on cable length, payload mass, trolley displacement and jib angle. 

Experiments are conducted on a laboratory crane under various scenarios to evaluate the 

controller performance in terms of the overall and residual payload sways. An obstacle 

avoidance operation is also examined to further investigate its robustness. For comparisons, 

robust Extra Insensitive (EI) shapers based on AOF are designed and implemented for each 

manoeuvre.  The main contributions of this work as compared to the existing literature are: 

a) A new adaptive input shaping design for payload swing control by considering 

varying cable length, payload mass and distances of trolley displacement and jib 

rotation. In the best of author’s knowledge, there is no work that consider all the 

important factors together, especially for a 5-DOF tower crane. 

b) The adaptive shaper can handle simultaneous crane motions of trolley displacement, 

jib rotation and payload lifting and lowering. This type of study that involves the 

challenging cases is limited in the literature. 

c) The proposed shaper is able to provide acceptable performance under an obstacle 

avoidance operation that involves payload lifting and lowering in a single manoeuvre 

together with trolley displacement and jib rotation motions. Not much work has been 

done on evaluating this scenario in the literature.   
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2. TOWER CRANE MODEL 

Figure 1 shows the schematic diagram of a 5-DOF tower crane considered in this work. The 

cylindrical coordinate system is used to define the trolley displacement 𝑟𝑟(𝑡𝑡), jib rotational 

angle 𝛾𝛾(𝑡𝑡) and position of payload 𝑃𝑃(𝑡𝑡) attached to an inextensible cable with varying length 

of  𝐿𝐿(𝑡𝑡). 𝜃𝜃(𝑡𝑡) and 𝜙𝜙(𝑡𝑡) are the payload swing angles. The position of the payload 𝑃𝑃(𝑡𝑡) in a 

three-dimensional (3D) space can be represented in terms of unit vectors 𝑥𝑥�, 𝑦𝑦� and 𝑧̂𝑧 along the 

𝑥𝑥, 𝑦𝑦 and 𝑧𝑧-axes, as 

 

𝑃𝑃(𝑡𝑡) = [𝑟𝑟(𝑡𝑡) − 𝐿𝐿(𝑡𝑡) cos𝜃𝜃(𝑡𝑡) sin𝜙𝜙(𝑡𝑡)]𝑥𝑥� + [𝐿𝐿(𝑡𝑡) sin𝜃𝜃(𝑡𝑡)]𝑦𝑦� − [𝐿𝐿(𝑡𝑡) cos𝜃𝜃(𝑡𝑡) cos𝜙𝜙(𝑡𝑡)]𝑧̂𝑧 (1) 

 

 

Figure 1: Tower crane schematic diagram 

 

Therefore, the payload velocity can be obtained as 

𝑃̇𝑃(𝑡𝑡) = �𝑟̇𝑟(𝑡𝑡) − 𝐿̇𝐿(𝑡𝑡) sin𝜙𝜙(𝑡𝑡) cos 𝜃𝜃(𝑡𝑡) − 𝐿𝐿(𝑡𝑡)�𝛾̇𝛾(𝑡𝑡) sin𝜃𝜃(𝑡𝑡) − 𝜃̇𝜃(𝑡𝑡) sin𝜃𝜃(𝑡𝑡) sin𝜙𝜙(𝑡𝑡) 

+ 𝜙̇𝜙(𝑡𝑡) cos 𝜃𝜃(𝑡𝑡) cos𝜙𝜙(𝑡𝑡))]𝑥𝑥� + �𝐿̇𝐿(𝑡𝑡) sin𝜃𝜃(𝑡𝑡) + 𝑟𝑟(𝑡𝑡)𝛾̇𝛾(𝑡𝑡) + 𝐿𝐿(𝑡𝑡) cos 𝜃𝜃(𝑡𝑡) 

�𝜃̇𝜃(𝑡𝑡) − 𝛾̇𝛾(𝑡𝑡) sin𝜙𝜙(𝑡𝑡)]𝑦𝑦� + �−𝐿̇𝐿(𝑡𝑡) cos𝜃𝜃(𝑡𝑡) cos𝜙𝜙(𝑡𝑡) +  𝐿𝐿(𝑡𝑡) 

�𝜃̇𝜃(𝑡𝑡) sin𝜃𝜃(𝑡𝑡) cos𝜙𝜙(𝑡𝑡) + 𝜙̇𝜙(𝑡𝑡) sin𝜙𝜙(𝑡𝑡) cos 𝜃𝜃(𝑡𝑡)��𝑧̂𝑧 (2) 

 

The kinetic energy of the payload having a mass 𝑚𝑚 can be calculated as 

 𝐾𝐾𝐸𝐸 = 1
2
𝑚𝑚�𝑃̇𝑃(𝑡𝑡). 𝑃̇𝑃(𝑡𝑡)� (3) 

 

and the potential energy of payload can be obtained as  

 𝑃𝑃𝐸𝐸 = −𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) cos𝜃𝜃 (𝑡𝑡) cos𝜙𝜙 (𝑡𝑡) (4) 
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where 𝑔𝑔 is the gravitational constant. By using the Lagrange equation, payload accelerations 

along both payload swing angles can be obtained as 

𝜃̈𝜃 = −
1
𝐿𝐿
�
𝛽𝛽1𝜃̇𝜃
𝐿𝐿𝐿𝐿

+ 2𝐿̇𝐿𝜃̇𝜃 − 2𝐿𝐿𝜙̇𝜙𝛾̇𝛾 cos2 𝜃𝜃 cos𝜙𝜙 +
1
2
𝐿𝐿𝜙̇𝜙2 sin 2𝜃𝜃 −  2𝐿̇𝐿𝛾̇𝛾 sin𝜙𝜙 + 𝑟𝑟𝛾̈𝛾 cos 𝜃𝜃 

−𝑟𝑟𝛾̇𝛾2 sin𝜃𝜃 sin𝜙𝜙 −  𝐿𝐿𝛾̈𝛾 sin𝜙𝜙 + 𝑔𝑔 sin𝜃𝜃 cos𝜙𝜙 + 2𝑟̇𝑟𝛾̇𝛾 cos 𝜃𝜃 + 𝑟̈𝑟 sin 𝜃𝜃 sin𝜙𝜙 

−  
1
2
𝐿𝐿𝛾̇𝛾2 sin 2𝜃𝜃 cos2 𝜙𝜙 � 

 

 

 (5) 

 

𝜙̈𝜙 =
−1

𝐿𝐿 cos2 𝜃𝜃
�
𝛽𝛽2𝜙̇𝜙
𝐿𝐿𝐿𝐿

− 𝐿𝐿𝜃̇𝜃𝜙̇𝜙 sin 2𝜃𝜃 + 2𝐿𝐿𝜃̇𝜃𝛾̇𝛾 cos2 𝜃𝜃 cos𝜙𝜙 + 𝐿̇𝐿𝛾̇𝛾 sin 2𝜃𝜃 cos𝜙𝜙 

𝑟𝑟𝛾̇𝛾2 cos 𝜃𝜃 cos𝜙𝜙 −
1
2
𝐿𝐿𝛾̇𝛾2 cos2 𝜃𝜃 sin 2𝜙𝜙 − 𝑟̈𝑟 cos𝜃𝜃 cos𝜙𝜙 + 2𝐿̇𝐿𝜙̇𝜙 cos2 𝜃𝜃 

+𝑔𝑔 cos 𝜃𝜃 sin𝜙𝜙 +
1
2
𝐿𝐿𝛾̈𝛾 sin 2𝜃𝜃 cos𝜙𝜙� 

 

 

 

(6) 

 

where 𝛽𝛽1 and 𝛽𝛽2 are the compensating factors and are taken as 0.01 and 0.0015. The tower 

crane is excited by the inputs 𝑟̈𝑟, 𝛾̈𝛾 and 𝐿̇𝐿 for trolley, jib and hoisting movements, respectively. 

Equations (5) and (6) show that the payload swings along both angles are nonlinear and 

coupled. In this work, the crane’s dynamic equations are simulated to obtain payload swing 

responses in x and y-axes under various crane parameters and operations. The collected data 

based on the system responses will then be used for training of NN and for development of an 

adaptive shaper. 

 

3. INPUT SHAPING DESIGN  

The input shaping technique is an open loop control used to prevent the resonant output of the 

system by modulating the control signal. Input shaper consists of a train of impulses with a 

specific magnitude and time delay. The shaper’s parameters are calculated so that the resultant 

sum of motion-induced oscillations is zero. Practically, input shaping is implemented in an 

open loop configuration by exciting the system with the shaped input obtained after convolving 

the baseline command with the shaper impulses.  

The simplest form of shaper with only two impulses is called Zero Vibration (ZV) shaper. 

The robustness of the shaper can be increased by taking the derivative of residual vibration 

equal to zero with respect to the frequency of residual vibration, and the resultant shaper is 
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known as ZVD. The ZVD shaper consists of three impulses, in which the pulse amplitude 𝐴𝐴𝑖𝑖 

and time delay 𝑡𝑡𝑖𝑖 can be calculated as  

 

where 

 𝜔𝜔𝑑𝑑 = 𝜔𝜔𝑛𝑛�1 − 𝜁𝜁2 (8) 

 𝐾𝐾 =  𝑒𝑒
� −𝜁𝜁𝜁𝜁

�1−𝜁𝜁2
�

 (9)  

 

𝜁𝜁 and 𝜔𝜔𝑛𝑛 are the damping ratio and the natural frequency of the system respectively. A 

vibration free system response can be obtained if suitable magnitudes and time delays are 

selected.  

 

4. ROBUST INPUT SHAPERS 

The effectiveness of input shapers in suppressing the oscillations induced by the motion is 

highly dependent on the accuracy of the obtained system’s natural frequency and damping 

ratio. In addition, as an input shaper is derived based on a linear second order system, its 

effectiveness is negatively affected when applied to a higher order nonlinear system such as 

the tower crane. Moreover, parameters of the tower crane vary during operations. Previous 

work has shown that the ZVD shaper cannot limit the residual system vibration by 5% when 

parameters change more than ±14% [28]. 

In this work the following factors are considered: 

a) Payload hoisting (lifting and lowering) with varying cable length. 

b) Different payload masses. 

c) Several distances of trolley displacement and jib rotation. 

d) Obstacle avoidance by combining payload lifting and lowering operations. 

e) Simultaneous motions of the trolley, jib and payload lifting/lowering. 

 
As a robust shaper is essential to ensure an effective sway reduction, a mechanism to 

automatically update the shaper parameters with changing system dynamics is required. 

Multiple adaptive approaches have been considered for implementation with the open loop 

�𝐴𝐴𝑖𝑖𝑡𝑡𝑖𝑖
� =

⎣
⎢
⎢
⎡ 1
1 + 2𝐾𝐾 + 𝐾𝐾2

2𝐾𝐾
1 + 2𝐾𝐾 + 𝐾𝐾2

𝐾𝐾2

1 + 2𝐾𝐾 + 𝐾𝐾2

0
𝜋𝜋
𝜔𝜔𝑑𝑑

2𝜋𝜋
𝜔𝜔𝑑𝑑 ⎦

⎥
⎥
⎤
  (7) 
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control. Among suitable approaches were fuzzy logic and NN as both can deal with real time 

data. However, the fuzzy logic design requires finding suitable membership functions, fine 

tuning of parameters and usually work best when the solution can be defined in a linguistic 

form, whereas the NN can provide a good performance when the input and output relation is 

nonlinear and with changing system parameters.  Therefore, a robust shaper based on NN is 

proposed in this work for payload swing control of a 5-DOF tower crane under the effects listed 

in (a) - (e). In the literature, NN has been utilised to solve several engineering related problems 

[19]. A robust EI shaper designed using AOF is also designed for performance comparison. 

 

4.1 Neural Network (NN) Based Shaper Design 

In this work, the proposed adaptive shapers considered a similar ZVD shaper with three 

impulses, but their parameters can be updated in real time with respect to the changing system 

parameters.  Therefore, the proposed method has an advantage over the conventional ZVD 

shaper that it provides an enhanced robustness with the same number of impulses and without 

increasing the shaper duration.  

The design of the proposed NN-ZVD shaper with optimal parameters consists of the 

following steps: 

a) Simulations of the tower crane were carried out using the dynamic model in Equations (5) 

and (6). The parameters used were 𝑔𝑔 = 9.81 m/s2, payload masses of 50 g, 150 g, 250 g and 

350 g, and cable lengths of 0.1 m to 0.9 m. The trolley and jib were moved to different 

positions from 0.1 m to 0.5 m and 10 to 50 degrees, respectively.  

b) System responses in 𝑥𝑥 and 𝑦𝑦-axes were observed, and the natural frequencies and damping 

ratios were calculated.  

c) Step (a) was repeated to collect results of the natural frequencies and damping ratios for all 

possible combinations of jib angle and trolley displacements with a difference of 10 degrees 

and 0.1 m, respectively.  The same data is collected for all four payloads with a cable length 

variation of 0.1 m.   

d) The data collected in steps (a), (b) and (c) against the four different variables of payload 

mass, cable length, jib angle and trolley displacement were used to calculate optimal ZVD 

parameters using Equation (7). To suppress the payload swing along two axes, two ZVD 

shapers are required, each having three impulses with magnitudes (𝐴𝐴1_𝑥𝑥, 𝐴𝐴2_𝑥𝑥, 

𝐴𝐴3_𝑥𝑥,𝐴𝐴1_𝑦𝑦,𝐴𝐴2_𝑦𝑦,𝐴𝐴3_𝑦𝑦) and time delays (∆𝑇𝑇_𝑥𝑥, ∆𝑇𝑇_𝑦𝑦). Table 1 shows some of the 

collected data together with the calculated ZVD shaper parameters.  
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e) The data shown in Table 1 was then used for the development of NN. The training process 

mapped the NN with nonlinear relationship between the input and output values of the 

parameters. 

f) Figure 2 shows a diagram for implementation of the NN-ZVD. The NN calculates the 

optimal shaper parameters based on the training process by using data generated in step (d). 

Thus, the shaper was able to adapt and achieve robustness against all the factors and 

minimising the payload swing of both axes under tangential and radial inputs.   

 

 

Figure 2: NN-ZVD implementation of tower crane. 

 

Table 1: Data collection for NN 

Payload mass 
(g)  

Jib rotation 
(deg) 

Trolley 
(m) 

Length 
(m) axis 𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 ∆𝑇𝑇 

(s) 

50 10 0.1 0.1 
   𝑥𝑥 0.303 0.5 0.197 0.450 
   𝑦𝑦 0.280 0.5 0.221 0.450 

50 20 0.2 0.2 
   𝑥𝑥 0.302 0.5 0.198 0.500 
   𝑦𝑦 0.278 0.5 0.222 0.500 

150 30 0.3 0.3 
   𝑥𝑥 0.260 0.5 0.240 0.550 
   𝑦𝑦 0.255 0.5 0.244 0.550 

150 40 0.4 0.4 
   𝑥𝑥 0.257 0.5 0.243 0.635 
   𝑦𝑦 0.253 0.5 0.247 0.635 

250 50 0.5 0.5 
   𝑥𝑥 0.253 0.5 0.247 0.710 
   𝑦𝑦 0.251 0.5 0.249 0.705 

Hoisting input 

 

Payload mass 
Cable length 

Radial 
input 

Tangential 
input 

 

 

 

 

 

 

 

 

 

x_angle 

y_angle 

Shaped input 

NN 

ZVD shaper 
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Jib rotation 
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250 10 0.1 0.6 
   𝑥𝑥 0.252 0.5 0.249 0.780 
   𝑦𝑦 0.251 0.5 0.249 0.775 

350 20 0.2 0.7 
   𝑥𝑥 0.251 0.5 0.249 0.840 
   𝑦𝑦 0.250 0.5 0.250 0.845 

350 30 0.3 0.8 
   𝑥𝑥 0.251 0.5 0.249 0.900 
   𝑦𝑦 0.250 0.5 0.249 0.915 

 

The collected data as in Table 1 is utilised to train NN which maps the nonlinearity 

between the inputs and outputs. Therefore, based on a new set of inputs, ZVD shaper can be 

updated in real time with optimal parameters. The training process of the NN was performed 

by using the Bayesian regularisation as it has the ability to achieve good generalisation of the 

complex data of a nonlinear system. This algorithm also works best when the target is within 

the range of [-1,1]. From the total collected data, 80% and 20% were used for training and 

testing respectively. The Bayesian regularisation used the Levenberg-Marquardt technique to 

optimize the weight and bias values based on minimizing the linear combination of link weights 

and squared errors. By using this technique and by limiting the maximum number of iterations, 

overfitting can be avoided. Moreover, to ensure that NN is able to establish dominant trends 

among various input and output parameters which avoid the issue of underfitting, adequate 

numbers of observations were used during the training.  

The NN design has four input neurons for cable length, payload mass, trolley displacement 

and jib angle, as shown in Figure 3. As described in step (d), six impulse magnitudes and two 

time delays are required for the design of two ZVD shapers. It can be noted in Table 1 that the 

impulse values of 𝐴𝐴2 for both axes are 0.5 for all possible combinations of inputs, and since 

the delays of the last two impulses are multiple of the first impulse delay, only six outputs were 

generated from NN to reduce the computational burden. The six NN outputs were magnitudes 

of impulses (𝐴𝐴1_𝑥𝑥, 𝐴𝐴3_𝑥𝑥,𝐴𝐴1_𝑦𝑦,𝐴𝐴3_𝑦𝑦) and time delays (∆𝑇𝑇_𝑥𝑥, ∆𝑇𝑇_𝑦𝑦). Based on the higher 

number of features in the collected data, the complexity of the crane system model and the 

actuation input limitation, 20 hidden neurons were used to achieve satisfactory performance.  



10 
 

 

Figure 3: Bayesian Regularized Artificial Neural Network (BRANN) 

 

Sigmoid activation function was used in the hidden layer due to the nonlinearity in the 

system under consideration and the wide range of measurements (cable length and trolley 

displacement in meter, payload mass in kilogram and jib rotation in radian). The ability of the 

sigmoid function to transfer any value between ±∝ to the corresponding value in the range of 

±1 also makes it an optimal choice. Figure 3 shows the NN structure where the indices 𝑖𝑖, 𝑗𝑗 and 

𝑘𝑘 represent the input, hidden and output layers respectively. The output of any hidden neuron 

𝑥𝑥𝑗𝑗 can be calculated from the knowledge of its input 𝑥𝑥𝑖𝑖 as 

𝑥𝑥𝑗𝑗 = Sigmoid ��𝑤𝑤𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗

𝑢𝑢

𝑖𝑖=1

�  

(10) 

 

where 𝑢𝑢 = 4 is the number of inputs. 𝑤𝑤𝑖𝑖,𝑗𝑗 denotes the numerical weight of the link between the 

hidden and input neurons and 𝑏𝑏𝑗𝑗 represents the bias value at the 𝑗𝑗-th hidden layer. 

The output neurons used a linear activation function to calculate the target parameters 

and achieve better curve fitting. The function is also a better selection than the sigmoid function 

at output neurons as it gives the flexibility to take on any value. In this study, the ZVD delay 

Cable 
Length 

Payload 
Mass 

b1 

b20 

c1 

c6 

𝐴𝐴1_𝑥𝑥 

∆𝑇𝑇_𝑦𝑦 

Input Layer Hidden Layer Output Layer 

Trolley 
Displacement 

Jib 
Rotation 
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values can be higher than one second. The target values generated by the output neurons can 

be calculated as 

𝑦𝑦𝑘𝑘 = �𝑤𝑤𝑗𝑗,𝑘𝑘𝑥𝑥𝑗𝑗 + 𝑐𝑐𝑘𝑘

𝑛𝑛

𝑗𝑗=1

     (11) 

where 𝑛𝑛 = 20 is the number of hidden nodes. The weight value, 𝑤𝑤𝑗𝑗,𝑘𝑘 is multiplied with the 

output of 𝑗𝑗-th neuron and then considered as the input of 𝑘𝑘-th node of the output layer. The 

predicted parameters are further tuned by adding the respective biased value, 𝑐𝑐𝑘𝑘 in each output 

neuron thus generating an output closer to the target value. The six target values generated by 

the Bayesian Regularised Artificial Neural Network (BRANN) are 𝑦𝑦1 = 𝐴𝐴1_𝑥𝑥, 𝑦𝑦2 = 𝐴𝐴3_𝑥𝑥, 

𝑦𝑦3 = 𝐴𝐴1_𝑦𝑦, 𝑦𝑦4 = 𝐴𝐴2_𝑦𝑦, 𝑦𝑦5 = ∆𝑇𝑇_𝑥𝑥 and 𝑦𝑦6 = ∆𝑇𝑇_𝑦𝑦. The weight values used by the trained NN 

between the input and hidden neurons, 𝑤𝑤𝑖𝑖,𝑗𝑗 are depicted in Equation (12) and the link weights 

between hidden and output neurons, 𝑤𝑤𝑗𝑗,𝑘𝑘 are given in Equation (13). As there are four input, 

20 hidden and six output neurons, the size of the matrices for 𝑤𝑤𝑖𝑖,𝑗𝑗 and 𝑤𝑤𝑗𝑗,𝑘𝑘 are 4 × 20 and 

20 × 6 respectively. Besides, the bias values are shown in Table 2. 

 

                  �

𝑤𝑤1,𝑗𝑗
𝑤𝑤2,𝑗𝑗
𝑤𝑤3,𝑗𝑗
𝑤𝑤4,𝑗𝑗

� = �

0.007 −3.458 0.0045 …  0.268
0.003 5.644 −0.001 … −6.28

0.0045 −4.609 0.002 …  1.707
0.0019 −4.754 −0.686 …  2.201

� (12) 

   [𝑤𝑤𝑗𝑗,1 𝑤𝑤𝑗𝑗,2 𝑤𝑤𝑗𝑗,3 … 𝑤𝑤𝑗𝑗,6]  = 

⎣
⎢
⎢
⎢
⎡

0.178 −0.215    2.478 … −6.172
0.488 −0.523    9.339 …  12.647
0.387     0.635 −2.345 …    20.06
⋮ ⋮ ⋮ ⋮    ⋮

−0.416     0.407    1.252 … −1.415⎦
⎥
⎥
⎥
⎤
 (13) 

 

 Table 2: NN biased values for hidden and output layer neurons 

𝑏𝑏𝑗𝑗 -0.738 -13.917 -1.722 13.329 -4.166 -2.660 0.889 -14.043 .  .  .   0.858 
𝑐𝑐𝑘𝑘 2.584 -2.993 0.306 2.129 -2.101 -2.605 

 
4.2 EI Shaper Based on Average Operating Frequency (AOF)  

Robustness of a ZV shaper can be enhanced by taking the derivatives of the residual vibration 

equation equal to zero which leads to the ZVD shaper. However, this additional robustness 

results in a slower system response. Each additional constraint requires an extra impulse to be 

convolved with the input, thus increases the shaper duration by 0.5 of the system’s vibration 

period. To overcome this issue, EI shaper that has a higher robustness was proposed. The shaper 
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forces the residual vibration to zero at two different frequencies instead of a single modelling 

frequency [29]. The two frequencies are selected in a way that one is higher, and the other is 

lower than the modelling frequency. This technique helps EI to provide extra robustness against 

the parameter uncertainties while keeping the same shaper duration as of ZVD. Contrary to the 

ZVD in which the formulations were derived with the target to totally eliminate the residual 

swing, EI limits the residual to a tolerable value. It was reported that the ability of EI shaper to 

limit the residual vibration within 5% of residual swing is 140% better than the ZVD shaper 

[28]. 

The magnitudes and delays of the EI shaper can be determined as  

 

�𝐴𝐴𝑖𝑖𝑡𝑡𝑖𝑖
� =

⎣
⎢
⎢
⎢
⎡
1 + 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡

4
1 − 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡

2
1 + 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡

4

0
𝜋𝜋

𝜔𝜔𝑛𝑛�1 − 𝜁𝜁2
2𝜋𝜋

𝜔𝜔𝑛𝑛�1 − 𝜁𝜁2⎦
⎥
⎥
⎥
⎤
 (14) 

 

where 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 is the tolerable value and is normally taken as 0.05 or 5%.  

As reported, EI exhibits higher robust performance towards parameter uncertainties as 

compared to ZV and ZVD shapers [29, 30]. Therefore, the EI shaper has been chosen to be the 

comparative method in this work. In addition, both ZVD and EI shapers require three-impulse 

sequence and with similar shaper duration. For a valid comparison, the robustness performance 

of the EI shaper was further improved by designing the shaper based on AOF. An average 

frequency of starting and final cable lengths along trolley and jib movements was considered 

and the shaper is referred as AOF-EI shaper. For each observation, two EI shapers were 

designed with 5% tolerable residual swing of payload for shaping the trolley and jib inputs. As 

the payload swing is affected by many factors, a dedicated AOF-EI shaper is required and it 

need to be re-designed for each scenario. 

 

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

Real-time implementation on a laboratory tower crane and experimental results of the proposed 

NN-ZVD and robust AOF-EI shapers are presented in this section. The performance of both 

shapers to suppress the payload swing is examined in terms of overall and residual payload 

swings. The laboratory tower crane as shown in Figure 4 with dimensions of 

1.2 m × 1.2 m × 1.5 m for its length, width and height respectively was used for experiments. 

The crane is connected to a computer through RT-DAC input output board. Payload swings 
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along 𝑥𝑥 and 𝑦𝑦-axes, cable length, trolley displacement and jib rotation angle in the cylindrical 

plane are measured using optical encoders fitted in the tower crane. For the payload swing 

angle, the encoders are capable of measuring with an accuracy of 0.086 degrees. The motions 

of trolley, jib and payload hoisting are controlled using three DC motors while their speeds can 

be adjusted through the control signal communicated from the computer to the DC motor. The 

RT-DAC board is fitted with an FPGA-based Xilinx chip which is configured to generate 

appropriate sequence of pulse width modulation (PWM) signal to control speed of the DC 

motors. The data is send/receive via the RT-DAC board by using the Simulink interface C-

source code and respective mex-files. Thus, user can define magnitude of the input signals and 

the respective PWM signals are generated by the configuration chips in the control board. 

 

 

Figure 4: Laboratory tower crane 

 

5.1 Performance Investigation   

The capability of the proposed shaper to move the payload with minimum swing is examined 

under various scenarios and with simultaneous motions of the crane’s parts. Experiments were 

performed on the laboratory crane with a maximum hoisting length of 0.8 m, trolley 

displacement of 0.5 m and jib rotation of 50 degrees. The payload mass of 200 g was used as 

a nominal weight while the shaper robustness was tested under ±50% variations (100 g and 

300 g) in payload mass. These scenarios provide changes up to 100% in the natural frequencies, 

which are crucial in input shaping design. It is worth mentioning that NN-ZVD performance 

was examined under conditions which were different from the one it was trained. Different 

combinations of payload masses, hoisting length, hoisting direction, trolley displacement and 
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jib rotation were considered to evaluate the shaper performance under all possible conditions. 

The performance of the shaper was quantitively measured by calculating the Mean Square 

Error (MSE) values for payload’s overall and residual swings for the duration of 10 s and the 

last 1 s (from 9 s to 10 s) respectively. A lower value of MSE is preferable as it represents a 

smaller payload swing angle. 

Three input forces applied by the DC motors were used to excite the trolley and jib 

(translational and slew) motions, and payload hoisting of the crane. As the payload swing 

response is affected by the motion speed, two input forces that produce different speeds are 

applied to investigate the performance of the shapers. These are referred to Case 1 and Case 2 

in this work.  

 

Case 1: The Trapezoidal Velocity Input 

The trapezoidal input is a common velocity trajectory and most of industrial controllers work 

with this input [31, 32]. It is also known as the bang-cast-bang acceleration approach. This 

command arises when a human operator pushes a button or moves a joystick that causes a 

gradual increase in the velocity of crane trolley and jib until a maximum velocity is achieved. 

The crane continues to move with the maximum velocity until a stop command decelerates it 

back to zero, as shown in Figure 5(a). The trapezoidal velocity generates a more realistic 

industrial scenario which is important to be investigated.  

 

Case 2: The Maximum Velocity Input 

In this case, the trolley and jib are accelerated and decelerated with a maximum force as shown 

in Figure 5(b). The sudden change in motion of the crane from rest to motion and motion to 

rest induced intense oscillations in the payload. Moving the crane with a maximum speed is 

highly desirable as it minimises the payload transportation time but at the cost of a significant 

payload swing. Designing a time-efficient controller that can move the payload with minimum 

sway under a fast motion of crane can save valuable time normally wasted due to residual 

payload sway. 

In addition to changes in the speed of motion, the robustness of the proposed controller 

was also examined with other parameters that affect the payload sways. Figure 6 shows the 

payload swing pendulation of the laboratory crane in 𝑥𝑥 and 𝑦𝑦-axes. It can be shown that the 

magnitude and pattern of the pendulations are significantly affected with variations in payload 

masses, cable lengths, trolley displacement and jib rotation. 
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(a) (b) 

Figure 5: Tower crane inputs. 

 

 

 

Figure 6: Payload swing with different (a) mass, (b) cable length, (c) trolley and jib 

displacements  

 

In this work, simulations using the nonlinear model were carried out to collect data for 

input shaper design. Figure 7 shows the simulation and experimental results of the payload 

swing when the crane was excited with an input depicted in Figure 5(a). An acceptable 

agreement between both responses was obtained and thus the nonlinear model can be 

effectively used for controller design. A slight difference in the 𝑥𝑥 and 𝑦𝑦-axes may be due to 

several factors such as air drag and friction which were not properly included in the dynamic 

model. 
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Figure 7: Simulation and experimental results of payload swing responses along (a) 𝑥𝑥-axis 

and (b) 𝑦𝑦-axis. 

 

5.2 Experimental Results 

This section presents experimental results based on the implementations of the proposed NN-

ZVD and AOF-EI shapers on the laboratory tower crane.  

 

5.2.1 Case 1: Trapezoidal Velocity Inputs 

In this case, both the trolley and the jib were excited with the trapezoidal inputs shown in Figure 

5(a) while the cable was hoisted at the maximum speed. Figure 8 shows 200 g payload 

pendulation when inputs of the tower crane were shaped with AOF-EI and the proposed NN-

ZVD shapers. A condition with payload lowering from 0.1 m to 0.8 m, a trolley displacement 

of 0.4 m and a jib rotation of 40 degrees was considered and was referred as Case 1a. The result 

shows that NN-ZVD can significantly reduce the payload swing along both axes resulting in 

less than 0.5 degrees of residual swing.  

 

 

Figure 8: Swing response for Case 1a along (a) 𝑥𝑥-axis and (b) 𝑦𝑦-axis 
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To further investigate the robustness of the NN-ZVD shaper, the following operating 

conditions were considered: 

• Case 1b: Payload 100 g, trolley displacement 0.5 m, jib rotation 25 degrees. 

• Case 1c: Payload 300 g, trolley displacement 0.25 m, jib rotation 50 degrees. 

• Case 1d: Payload 100 g, trolley displacement 0.5 m, jib rotation 25 degrees. 

• Case 1e: Payload 200 g, trolley displacement 0.4 m, jib rotation 40 degrees.  

 

Cases 1b and 1c involve payload lowering from 0.1 m to 0.8 m and their payload swing 

responses are shown in Figure 9. Besides, Cases 1d and 1e examine the payload lifting from 

0.8 m to 0.1 m, with similar trolley displacements and jib rotations as in the previous conditions 

(payload lowering). The payload swing responses are shown in Figure 10. It is important to 

mention for each case, a separate AOF-EI shaper needs to be designed as the pendulation 

dynamics change. However, a single NN-ZVD shaper was used for all conditions without the 

requirement for re-design. The results show that NN-ZVD can limit the residual vibration 

within ±1 degree irrespective of the variations in the parameters. For the cases with payload 

lifting, the NN-ZVD also proved its robustness by limiting the payload swing within the range 

of ±0.5 degrees whereas the AOF-EI shaper performance degraded. The quantitative measures 

of all scenarios in terms of MSE values of overall and residual swings are shown in Table 3. 

Moreover, the percentage improvements of NN-ZVD over AOF-EI are shown in Figure 11. In 

all cases, the NN-ZVD achieved at least 50% improvements over AOF-EI. 

 

 

Figure 9: Swing response for Case 1b (a,b) and Case 1c (c,d) along (a,c) 𝑥𝑥-axis and (b,d) 𝑦𝑦-

axis. 
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Figure 10: Swing response for Case 1d (a,b) and Case 1e (c,d) along (a,c) 𝑥𝑥-axis  and (b,d) 𝑦𝑦-

axis. 

 

 

Table 3: MSE values of payload swing with NN-ZVD and AOF-EI shapers using the 
trapezoidal input 

Case Axis Overall swing (MSE) Residual swing (MSE) 
NN-ZVD AOF-EI NN-ZVD AOF-EI 

Case 1a x 0.35 0.78 0.18 0.36 
y 0.26 0.51 0.36 0.75 

Case 1b x 0.26 0.53 0.12 0.48 
y 0.37 1.57 0.28 1.72 

Case 1c x 0.34 0.80 0.14 0.44 
y 0.42 0.96 0.15 1.12 

Case 1d x 0.39 3.50 0.24 5.11 
y 0.87 3.26 0.01 0.49 

Case 1e x 0.33 0.66 0.20 0.46 
y 0.39 1.01 0.002 0.26 

 

 



19 
 

 

Figure 11: Percentage improvements of NN-ZVD over AOF-EI 

 

5.2.2 Case 2: Maximum Velocity Inputs 

A fast crane movement is highly desirable to speed up the operation process, but it is at the cost 

of higher payload swing. To achieve both the minimum transportation time and low payload 

swing controller, the shaper parameters need to be updated accurately in real-time. In this 

section, experimental results of the payload swing responses with the input force as shown in 

Figure 5(b) are presented. The following conditions were observed: 

 

• Case 2a: Payload 200 g, trolley displacement 0.21 m, jib rotation 20 degrees, payload 

lowering 0.1 m to 0.4 m. 

• Case 2b: Payload 100 g, trolley displacement 0.45 m, jib rotation 45 degrees, payload 

lowering 0.1 m to 0.76 m. 

• Case 2c: Payload 300 g, trolley displacement 0.3 m, jib rotation 30 degrees, payload 

lowering 0.1 m to 0.54 m. 

 

The results for Case 2a are shown in Figure 12 which demonstrate that NN-ZVD is more 

capable of suppressing the payload swings despite a higher motion speed. In particular, for the 

𝑦𝑦-axis, the NN-ZVD can almost completely eliminate the payload swing. Figures 13 shows the 

results for Cases 2b and 2c which displayed a similar pattern. In all cases, the residual payload 

swings were kept within 1 degree with the NN-ZVD shaper. 
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Figure 12: Swing response for Case 2a along (a) 𝑥𝑥-axis and (b) 𝑦𝑦-axis. 

 

Figure 13: Swing response for Case 2b (a,b) and Case 2c (c,d) along (a,c) 𝑥𝑥-axis and (b,d) 𝑦𝑦-

axis. 

 

In spite of moving the crane with a maximum speed, comparisons of MSE values in Table 

4 show that a single NN-ZVD shaper achieves a superior performance as compared to 

dedicated AOF-EI shapers. Improvements of NN-ZVD over AOF-EI are presented in Figure 

14, which is more than 50% in the overall swing and with a minimum improvement of 71% in 

the residual swing. 

 

Table 4: MSE values of the payload swing response with NN-ZVD and AOF-EI shapers 
using the maximum velocity 

Case Axis Overall swing (MSE) Residual swing (MSE) 
NN-ZVD AOF-EI NN-ZVD AOF-EI 

Case 2a x 0.43 0.91 0.22 0.77 
y 0.65 1.36 0.12 1.25 

Case 2b x 0.45 0.92 0.19 0.49 
y 0.53 2.47 0.0002 1.83 
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Case 2c x 0.49 1.04 0.25 0.91 
y 0.67 1.88 0.20 1.50 

 

 

 

Figure 14: Percentage improvements of NN-ZVD over AOF-EI 

 

5.3 Obstacle Avoidance 

Another challenging practical scenario is to avoid an obstacle during a crane operation. When 

there is an obstacle in between the start and end positions, the operator has two choices: to 

avoid a collision by navigating the payload around the obstacle or perform a combination of 

hoisting operations. Many researchers have devised mechanisms to avoid the collision by 

adopting a nominal path, but it requires more complex calculations with a longer path. In some 

cases, the obstacle was avoided by considering only hoisting up operation and with a slower 

crane motion [33]. A good control mechanism for a tower crane under this scenario is still 

lacking.  

In this work, a more complex scenario was considered by moving the crane with a 

maximum force while the collision is avoided by performing an appropriate combination of 

lifting and lowering maneuverings. Eliminating the payload swing is difficult when a 

combination of payload hoisting up-down is performed in a single manoeuvre.  Figure 15 

shows front and top views of a scenario with an obstacle of 0.45 m height. Two payload’s 

initial conditions of 0.7 m and 0.2 m from the trolley were considered and the target position 

in both conditions was 0.8 m. Figures 16(a) and 16(b) show the cable length variations in 

carrying the tasks. As this scenario also considered simultaneous motions, the payload path 

was pre-planned by considering the trolley translational and jib rotation speeds, to ensure that 

the payload is lifted to a safety height before it is lowered to the desired position.  
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(a) (b) 
Figure 15: An obstacle in between of initial and final locations of the payload with (a) front 

view and (b) top view 

 

 

Figure 16: Cable length hoisting for obstacle avoidance with different payload’s initial 

conditions (a) 0.7 m (b) 0.2 m 

 

Figure 17 shows payload swing responses of the laboratory crane with a payload of 200 

g. In both conditions, the trolley and jib were simultaneously moved to 0.3 m and 30 degrees 

respectively. The results confirmed that the proposed NN-ZVD shaper has a higher robustness 

over the AOF-EI shaper by limiting the residual payload swing to ±1 degree. Table 5 presents 

the MSE values of the payload swing achieved using both shapers. It is noted that NN-ZVD 

provided a better response and with a minimum improvement of 50%. 
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Figure 17: Payload swing with obstacle avoidance (a,b) initial condition of 0.7 m, (c,d) 

initial condition of 0.2 m, along (a,c) 𝑥𝑥-axis and (b,d) 𝑦𝑦-axis 

 

Table 5: MSE values of payload swing response with NN-ZVD and AOF-EI shapers under 
obstacle avoidance 

Initial 
condition 

(m) 

Axis Overall swing Residual swing 
NN-ZVD 

(MSE) 
AOF-EI 
(MSE) 

Imp (%) NN-ZVD 
(MSE) 

AOF-EI 
(MSE) 

Imp (%) 

0.2 x 0.4719 1.3053 63.85 0.0925 0.5598 83.48 
y 1.1337 5.9946 81.09 0.0478 5.3935 99.11 

0.7 x 0.768 1.6144 52.43 0.1363 0.3946 65.45 
y 1.2212 2.3859 48.82 0.1198 0.5285 77.32 

Imp - Improvement 
 

 

A clearer view on the payload’s circular pendulations during the crane motions to avoid 

the obstacle can be shown by plotting the swing in x and y-axes. Figure 18 shows the circular 

motions using the unshaped and shaped inputs under both initial conditions. It is also a top 

view of the motions. It is noted that the shape of the pendulations were different in both 

conditions and the unshaped input resulted in a very large sway area. Nevertheless, similar to 

the previous results, the NN-ZVD shaper achieved the best performance with the smallest area 

of sway. Experimental results demonstrate that the proposed adaptive shaper is able to handle 

changing cable lengths through payload lifting and lowering within a single manoeuvre, and 

together with simultaneous and fast trolley and jib rotation motions. 
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(a) (b) 

Figure 18: Payload pendulations of a 200 g payload with obstacle avoidance, (a) initial 

condition of 0.7 m, (b) initial condition of 0.2 m. 

 

6. CONCLUSIONS 

An adaptive input shaper has been designed and implemented in real time for payload swing 

control of a 5-DOF tower crane under parameter uncertainties, payload hoisting and with 

simultaneous motions of crane’s parts. The capability of NN to generate a nonlinear input-

output mapping has been utilised to develop an adaptive mechanism in which optimal shaper’s 

parameters can be continuously updated according to the changes in the crane dynamics. 

Experiments under challenging practical scenarios up to 100% changes in the payload sway 

frequencies have demonstrated the superiority of the NN-ZVD shaper over the robust AOF-EI 

shaper. In all cases, at least 50% improvements have been achieved using the NN-ZVD, and 

the residual sway has been kept less than one degree. Moreover, a satisfactory performance has 

also been achieved under an obstacle avoidance scenario. Future research will consider 

implementation of the proposed technique on a tower crane with double-pendulum dynamics. 

This type of crane is closer to the real practical crane, but its swing control is challenging as 

hook and payload sways need to be considered, and they oscillate with difference frequencies. 

It is also envisaged that the proposed shaper design can be implemented for payload swing 

control of other crane systems with translational and rotational motions. 
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