97 research outputs found

    Silver-Doped Cadmium Selenide/Graphene Oxide-Filled Cellulose Acetate Nanocomposites for Photocatalytic Degradation of Malachite Green toward Wastewater Treatment

    Get PDF
    Silver-doped cadmium selenide/graphene oxide (GO) (Ag-CdSe/GO) nanocomposites have been synthesized, loaded in cellulose acetate (CA) to form Ag-CdSe/GO@CA heterostructure nanofibers, and characterized in terms of structural, morphological, photocatalytic properties, among others. The photocatalytic degradation of malachite green (MG) was estimated using cadmium selenide-filled CA (CdSe@CA), silver-doped cadmium selenide-filled CA (Ag-CdSe@CA), cadmium selenide/GO-filled CA (CdSe/GO@CA), and silver-doped cadmium selenide/GO-filled CA (Ag-CdSe/GO@CA) nanocomposite materials. The Ag-CdSe/GO@CA nanocomposites exhibit and retain an enhanced photocatalytic activity for the degradation of MG dye. This amended performance is associated with the multifunctional supporting impacts of GO, Ag, and CA on the composite structure and properties. The superior photocatalytic activity is related to the fact that both Ag and GO can act as electron acceptors that boost the separation efficiency of photogenerated carriers and the loading of the combined nanocomposite (Ag-CdSe@GO) on CA nanofibers, which can augment the adsorption of electrons and holes and facilitate the movement of carriers. The stability of Ag-CdSe/GO@CA nanocomposite photocatalysts demonstrates suitable results even after five recycles. This study establishes an advanced semiconductor-based hybrid nanocomposite material for efficient photocatalytic degradation of organic dyes.The Academy of Scientific Research and Technology (ASRT), Egypt, Grant No. 6510, supported this project financially

    Unorthodox synthesis, biological activity and DFT studies of novel and multifunctionalized naphthoxocine derivatives

    Get PDF
    A new promising protocol has been developed for the synthesis of scarce oxocine derivatives 3a–e and 6 through addition of amine-based nucleophiles such as hydroxylamine hydrochloride, primary amine and hydrazide to chromonylidene benzothiazol-2-ylacetonitrile 2 in refluxing dioxane under metal free reaction conditions in moderate to good yields. Other nitrogen nucleophiles such as piperidine, hydrazine and thiosemicarbazide failed to afford the corresponding oxocinols, and instead pyridine derivatives 7, 8 and 10 were obtained exclusively. Predictive study for the biological activities using PASS (prediction of activity spectra for biologically active substances) online software showed optimistic activities for oxocinols 3a–e in the treatment of cancer, influenza A and microbial infections. Additionally, DFT studies of oxocine derivatives 3a–e and 6 indicated the presence of required thermodynamics parameters for the application in dye-sensitized solar cells (DSSCs)

    Stripping voltammetric methods for determination of the antiparasitic drug nitazoxanide in bulk form, pharmaceutical formulation and human serum

    Full text link
    Cyclic voltammograms of nitazoxanide recorded at the hanging mercury drop electrode in the Britton-Robinson universal buffer of pH values 2 to 11 containing 20% (v/v) ethanol exhibited a single 4-electron irreversible cathodic peak corresponding to the reduction of its NO2 group to the hydroxylamine stage. Nitazoxanide was found to adsorb onto surface of the mercury electrode in a monolayer surface coverage of 3.16×10-10 mol cm-2 in which each adsorbed molecule occupies an area of 0.525 nm². Based on its adsorption behavior onto the mercury electrode surface, validated linear sweep (LS), differential pulse (DP) and square wave (SW) adsorptive cathodic stripping voltammetric methods were described for determination of bulk nitazoxanide. Limits of detection of 1.5×10-10, 2.4×10-10 and 3.0×10-11 mol L-1 and limits of quantification of 5.0×10-10, 8.0×10-10 and 1.0×10-10 mol L-1 nitazoxanide in the bulk form were achieved by means of the described LS, DP and SW adsorptive cathodic stripping voltammetric methods, respectively. The described methods were successfully applied for determination of nitazoxanide in its pharmaceutical formulation (Cryptonaz powder) and in spiked human serum without the necessity for sample pretreatment, time consuming extraction steps or formation of colored chromogens prior to the analysis. Besides, nitazoxanide was successfully determined without interference from its acid or base-induced degradation products indicating the stability-indicating power of the described voltammetric methods

    Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon

    Get PDF
    Aim of study: To explore the role of ascorbic acid (AsA) or silicon (Si) in improving drought tolerance in five faba bean cultivars under irrigation water deficit (IWD).Area of study: The experimental farm; 30° 36′ N, 32° 16′ E, Egypt.Material and methods: Three drip irrigation regimes (WW, well-watered, 4000 m3 water ha-1; MD, moderate drought, 3000 m3 water ha-1; and SD, severe drought, 2000 m3 water ha-1) were applied to plants, which were sprayed 25, 40, and 55 days after sowing with 1.5 mM AsA or 2.0 mM Si vs distilled water as a control.Main results: Drought negatively affected physiological attributes (photosynthetic pigments, gas exchange parameters, relative water content, membrane stability index, electrolyte leakage (EL), and lipid peroxidation), which restricted plant growth and yields, and stimulated alterations in both enzymatic and non-enzymatic antioxidant activities. However, AsA or Si application mitigated drought effects on physiological attributes, improving growth, yields and water use efficiency by raising antioxidant activities and suppressing lipid peroxidation and EL in stressful cultivars. The mitigating effects of AsA and Si were more pronounced under MD.Research highlights: ‘Nubaria-2’, ‘Giza-843’, and ‘Sakha-3’ were more tolerant than ‘Giza-716’ and ‘Sakha-4’, suggesting the use of AsA or Si to ameliorate the IWD effects on stressful cultivars. Certain physiological traits exhibited positive association with growth and seed yield, demonstrating their importance in enhancing seed yield under irrigation treatments

    Synthesis of novel naphthalene-heterocycle hybrids with potent antitumor, anti-inflammatory and antituberculosis activities

    Get PDF
    Multitarget-directed drugs (hybrid drugs) constitute an efficient avenue for the treatment of multifactorial diseases. In this work, novel naphthalene hybrids with different heterocyclic scaffolds such as nicotinonitrile, pyran, pyranopyrazole, pyrazole, pyrazolopyridine, and azepine were efficiently synthesized via tandem reactions of 3-formyl-4H-benzo[h]chromen-4-one 1 with different nucleophilic reagents. Analysis of these hybrids using PASS online software indicated different predicted biological activities such as anticancer, antimicrobial, antiviral, antiprotozoal, anti-inflammatory, etc. By focusing on antitumor, anti-inflammatory, and antituberculosis activities, many compounds revealed remarkable activities. While 3c, 3e, and 3h were more potent than doxorubicin in the case of HepG-2 cell lines, 3a–e, 3i, 6, 8, 10, 11, and 12b were more potent in the case of MCF-7. Moreover, compounds 3c, 3h, 8, 10, 3d, and 12b manifested superior activity and COX-2 selectivity to the reference anti-inflammatory Celecoxib. Regarding antituberculosis activity, 3c, 3d, and 3i were found to be the most promising with MIC less than 1 mg mL–1. The molecular docking studies showed strong polar and hydrophobic interactions with the novel naphthalene-heterocycle hybrids that were compatible with experimental evaluations to a great extent

    Biochemical Characterization and Antimicrobial Activity Against Some Human or Phyto-Pathogens of New Diazonium Heterocyclic Metal Complexes

    Get PDF
    String of vanadium (IV), zirconium (IV), palladium (II), platinum (IV) and uranium (VI) chelates of 2-cyano-2-[(2- nitrophenyl)hydrazono]thioacetamide (Cnphta) were prepared and characterized by physicochemical, spectroscopic and thermal analyses. The formulae of the isolated solid complexes were assigned as [VO- (Cnphta)2(H2O)]SO4 ·5H2O (1), [ZrO(Cnphta)2(H2O)]Cl2 ·4H2O (2), [Pd(Cnphta)2]Cl2 (3), [Pt(Cnphta)2Cl2]Cl2 (4) and [UO2(Cnphta)2](NO3)2 ·5H2O (5). The infrared assignments clearly showed that Cnphta ligand coordinated as a bidentate feature through the hydrazono nitrogen and the thioacetamide nitrogen for V(IV), Zr(IV) and U(VI) but displayed different behavior for Pd(II) and Pt(IV). Results of the molar conductivities measurements showed that the metal complexes were electrolytes in contrast with Cnphta ligand. The interpretation, mathematical analysis and evaluation of kinetic parameters were also carried out. In addition, the studied ligand and its new chelates were tested for their antimicrobial activity against some human or phytopathogenic microorganisms. The new metal complexes explicated promising antibacterial activity against all tested bacteria especially Staphylococcus aureus and Bacillus subtilis. Regarding the antifungal activity, all metal complexes were able to inhibit the mycelium growth of both tested pathogenic fungi. In particular Zr(IV) and Pt(IV) complexes showed the highest significant fungicidal effect against A. fumigatus similar to positive contro

    Irrigation Practices and Their Effects on Soil Quality and Soil Characteristics in Arid Lands: A Comprehensive Geomatic Analysis

    Get PDF
    Comprehension of the long-term effects of irrigation on basic soil characteristics and quality is essential for sustainable land management and agricultural production, particularly in arid regions where water availability is limited. This study aimed to investigate long-term irrigation effects on soil quality, soil organic carbon (SOC), and nitrogen (N) stocks in the arid lands of Egypt. Seventy soil samples were collected and analyzed to determine various soil properties. A soil quality index (SQI), SOC, and N stocks were computed. ANOVA and PCA analyses were used to identify signifiant differences between alluvial soils in the southwest part of the investigated area and coastal marine soils in the northeast of the study area. The results demonstrated that most of the studied soil parameters had signifiantly greater values in alluvial compared to coastal marine soils. Long-term irrigation led to an 8.00% increase in SOC and 7.22% increase in N stocks compared to coastal marine soils production. Furthermore, a 39.53% increase was found in the SQI upon longterm irrigation practice. These results suggest that shifting from rain-fed in coastal marine areas to irrigated production systems in alluvial filds can improve soil quality, SOC, and N stocks. Therefore, further studies are required to investigate the impact of additional factors, such as irrigation method and salinity status of sub-surface soil layers, to enhance agricultural productivity and sustainable land use
    • …
    corecore