38 research outputs found

    Genotoxicity and acute and subchronic toxicity studies of a standardized methanolic extract of Ficus deltoidea leaves

    Get PDF
    OBJECTIVE: Ficus deltoidea leaves have been used in traditional medicine in Southeast Asia to treat diabetes, inflammation, diarrhea, and infections. The present study was conducted to assess the genotoxicity and acute and subchronic toxicity of a standardized methanol extract of F. deltoidea leaves. METHODS: Sprague Dawley rats were orally treated with five different single doses of the extract and screened for signs of toxicity for two weeks after administration. In the subchronic study, three different doses of the extract were administered for 28 days. Mortality, clinical signs, body weight changes, hematological and biochemical parameters, gross findings, organ weights, and histological parameters were monitored during the study. Genotoxicity was assessed using the Ames test with the TA98 and TA100 Salmonella typhimurium strains. Phytochemical standardization was performed using a colorimeter and high-performance liquid chromatography. Heavy metal detection was performed using an atomic absorption spectrometer. RESULTS: The acute toxicity study showed that the LD50 of the extract was greater than 5000 mg/kg. In the subchronic toxicity study, there were no significant adverse effects on food consumption, body weight, organ weights, mortality, clinical chemistry, hematology, gross pathology, or histopathology. However, a dose-dependent increase in the serum urea level was observed. The Ames test revealed that the extract did not have any potential to induce gene mutations in S. typhimurium, either in the presence or absence of S9 activation. Phytochemical analysis of the extract revealed high contents of phenolics, flavonoids, and tannins. High-performance liquid chromatography analysis revealed high levels of vitexin and isovitexin in the extract, and the levels of heavy metals were below the toxic levels. CONCLUSION: The no-observed adverse effect level of F. deltoidea in rats was determined to be 2500 mg/kg

    Cat's whiskers tea (orthosiphon stamineus) extract inhibits growth of colon tumor in nude mice and angiogenesis in endothelial cells via suppressing VEGFR phosphorylation

    Get PDF
    Cat's whiskers (Orthosiphon stamineus) is commonly used as Java tea to treat kidney stones including a variety of angiogenesis-dependent diseases such as tumorous edema, rheumatism, diabetic blindness, and obesity. In the present study, antitumor potential of standardized 50% ethanol extract of O. stamineus leaves (EOS) was evaluated against colorectal tumor in athymic mice and antiangiogenic efficacy of EOS was investigated in human umbilical vein endothelial cells (HUVEC). EOS at 100 mg/kg caused 47.62 ± 6.4% suppression in tumor growth, while at 200 mg/kg it caused 83.39 ± 4.1% tumor regression. Tumor histology revealed significant reduction in extent of vascularization. Enzyme-linked immunosorbent assay showed EOS (200 mg/kg) significantly reduced the vascular endothelial growth factor (VEGF) level in vitro (211 ± 0.26 pg/ml cell lysate) as well as in vivo (90.9 ± 2 pg/g tissue homogenate) when compared to the control (378 ± 5 and 135.5 ± 4 pg, respectively). However, EOS was found to be noncytotoxic to colon cancer and endothelial cells. In vitro, EOS significantly inhibited the migration and tube formation of human umbilical vein endothelial cells (HUVECs). EOS suppressed VEGF-induced phosphorylation of VEGF receptor-2 in HUVECs. High performance liquid chromatography (HPLC) analysis of EOS showed high rosmarinic acid contents, whereas phytochemical analysis revealed high protein and phenolic contents. These results demonstrated that the antitumor activity of EOS may be due to its VEGF-targeted antiangiogenicity

    Proapoptotic and antimetastatic properties of supercritical CO2 extract of Nigella sativa Linn. Against breast cancer cells

    Get PDF
    Nigella sativa, commonly referred as black cumin, is a popular spice that has been used since the ancient Egyptians. It has traditionally been used for treatment of various human ailments ranging from fever to intestinal disturbances to cancer. This study investigated the apoptotic, antimetastatic, and anticancer activities of supercritical carbon dioxide (SC-CO) extracts of the seeds of N. sativa Linn. against estrogen-dependent human breast cancer cells (MCF-7). Twelve extracts were prepared from N. sativa seeds using the SC-CO extraction method by varying pressure and temperature. Extracts were analyzed using FTIR and UV-Vis spectrometry. Cytotoxicity of the extracts was evaluated on various human cancer and normal cell lines. Of the 12 extracts, 1 extract (A3) that was prepared at 60 C and 2500 psi (∼17.24 MPa) showed selective antiproliferative activity against MCF-7 cells with an IC of 53.34±2.15 μg/mL. Induction of apoptosis was confirmed by evaluating caspases activities and observing the cells under a scanning electron microscope. In vitro antimetastatic properties of A3 were investigated by colony formation, cell migration, and cell invasion assays. The elevated levels of caspases in A3 treated MCF-7 cells suggest that A3 is proapoptotic. Further nuclear condensation and fragmentation studies confirmed that A3 induces cytotoxicity through the apoptosis pathway. A3 also demonstrated remarkable inhibition in migration and invasion assays of MCF-7 cells at subcytotoxic concentrations. Thus, this study highlights the therapeutic potentials of SC-CO extract of N. sativa in targeting breast cancer

    Ethyl-p-methoxycinnamate isolated from kaempferia galanga inhibits inflammation by suppressing interleukin-1, tumor necrosis factor-α, and angiogenesis by blocking endothelial functions

    Get PDF
    OBJECTIVE: The present study aimed to investigate the mechanisms underlying the anti-inflammatory and anti-angiogenic effects of ethyl-p-methoxycinnamate isolated from Kaempferia galanga. METHODS: The anti-inflammatory effects of ethyl-p-methoxycinnamate were assessed using the cotton pellet granuloma assay in rats, whereby the levels of interleukin-1 and tumor necrosis factor-α were measured in the animals' blood. In addition, the levels of interleukin, tumor necrosis factor, and nitric oxide were measured in vitro using the human macrophage cell line (U937). The analgesic effects of ethyl-p-methoxycinnamate were assessed by the tail flick assay in rats. The anti-angiogenic effects were evaluated first by the rat aortic ring assay and, subsequently, by assessing the inhibitory effects of ethyl-p-methoxycinnamate on vascular endothelial growth factor, proliferation, migration, and tube formation in human umbilical vein endothelial cells. RESULTS: Ethyl-p-methoxycinnamate strongly inhibited granuloma tissue formation in rats. It prolonged the tail flick time in rats by more than two-fold compared with the control animals. The inhibition of interleukin and tumor necrosis factor by ethyl-p-methoxycinnamate was significant in both in vivo and in vitro models; however, only a moderate inhibition of nitric oxide was observed in macrophages. Furthermore, ethyl-p-methoxycinnamate considerably inhibited microvessel sprouting from the rat aorta. These mechanistic studies showed that ethyl-p-methoxycinnamate strongly inhibited the differentiation and migration of endothelial cells, which was further confirmed by the reduced level of vascular endothelial growth factor. CONCLUSION: Ethyl-p-methoxycinnamate exhibits significant anti-inflammatory potential by inhibiting pro-inflammatory cytokines and angiogenesis, thus inhibiting the main functions of endothelial cells. Thus, ethyl-p-methoxycinnamate could be a promising therapeutic agent for the treatment of inflammatory and angiogenesis-related diseases

    Correction to: Standardized extract of Ficus deltoidea stimulates insulin secretion and blocks hepatic glucose production by regulating the expression of glucose-metabolic genes in streptozitocin-induced diabetic rats

    No full text
    After the publication of this article [1] it came to our attention that one author, Boon Yin Khoo, was erroneously omitted from the authorship list

    Structures, DNA binding, DNA cleavage, and antitumor investigations of a series of molybdenum(VI) complexes with some N(4) methyl and ethyl thiosemicarbazone ligands

    No full text
    <div><p>Four dioxomolybdenum(VI) complexes were synthesized by reaction of [MoO<sub>2</sub>(acac)<sub>2</sub>] with thiosemicarbazones derived from 5-allyl-2-hydroxy-3-methoxybenzaldehyde (<b>1</b>), 2-hydroxynaphthaldehyde (<b>2</b>), 2,3-dihydroxybenzaldehyde (<b>3</b>), or 5-tert-butyl-2-hydroxybenzaldehyde (<b>4</b>). The ligands were coordinated to molybdenum as tridentate ONS donors. X-ray crystallography showed that the distorted octahedral coordination of molybdenum is completed by methanol (D) in <b>1a</b>, <b>3a</b>, and <b>4a</b> or H<sub>2</sub>O in <b>2a</b>. The molecular structures of <b>1</b>, <b>3</b>, and <b>4</b>, and the complexes were determined by single-crystal X-ray crystallography. Binding of the ligand and complexes with calf thymus DNA were investigated by UV, fluorescence titrations, and viscosity measurements. Gel electrophoresis revealed that all the complexes can cleave pBR322 plasmid DNA. The cytotoxic properties of the complexes against human colorectal (HCT 116) cell line showed strong antiproliferative activities in relative order <b>4a </b>> <b>3a </b>> <b>1a </b>> <b>2a</b> with IC<sub>50</sub> values of 1.6, 4.0, 4.8, and 6.7 μM, respectively. The complexes exhibited more activity than the standard reference drug, 5-fluorouracil (IC<sub>50</sub> 7.3 μM). These studies show that dioxomolybdenum(VI) complexes have potential use in chemotherapy.</p></div

    Cat's whiskers tea (Orthosiphon Stamineus) extract inhibits growth of colon tumor in nude mice and angiogenesis in endothelial cells via suppressing VEGFR phosphorylation

    No full text
    Cat's whiskers (Orthosiphon stamineus) is commonly used as Java tea to treat kidney stones including a variety of angiogenesis-dependent diseases such as tumorous edema, rheumatism, diabetic blindness, and obesity. In the present study, antitumor potential of standardized 50% ethanol extract of O. stamineus leaves (EOS) was evaluated against colorectal tumor in athymic mice and antiangiogenic efficacy of EOS was investigated in human umbilical vein endothelial cells (HUVEC). EOS at 100 mg/kg caused 47.62 ± 6.4% suppression in tumor growth, while at 200 mg/kg it caused 83.39 ± 4.1% tumor regression. Tumor histology revealed significant reduction in extent of vascularization. Enzyme-linked immunosorbent assay showed EOS (200 mg/kg) significantly reduced the vascular endothelial growth factor (VEGF) level in vitro (211 ± 0.26 pg/ml cell lysate) as well as in vivo (90.9 ± 2 pg/g tissue homogenate) when compared to the control (378 ± 5 and 135.5 ± 4 pg, respectively). However, EOS was found to be noncytotoxic to colon cancer and endothelial cells. In vitro, EOS significantly inhibited the migration and tube formation of human umbilical vein endothelial cells (HUVECs). EOS suppressed VEGF-induced phosphorylation of VEGF receptor-2 in HUVECs. High performance liquid chromatography (HPLC) analysis of EOS showed high rosmarinic acid contents, whereas phytochemical analysis revealed high protein and phenolic contents. These results demonstrated that the antitumor activity of EOS may be due to its VEGF-targeted antiangiogenicity

    In vitro antimetastatic activity of Agarwood (Aquilaria crassna) essential oils against pancreatic cancer cells

    Get PDF
    Background: Pancreatic cancer is one of the most lethal malignant tumors which remains a rampant killer across the globe. Lack of early diagnosis and toxic drugs have failed to improve the survival rate of pancreatic cancer patients, thus new agents that are safe, available and effective are urgently needed. Objective: The study aimed to investigate the efficacy of Agarwood essential oils in the inhibition of metastasis and induction of apoptosis in the pancreatic cell line (MIA PaCa-2). Methods: Essential oils of Aquilaria crassna were obtained by hydrodistillation. Chemical characterization was analyzed using FTIR and GCMS. The effects of essential oils against three steps of metastases have been investigated, including cell proliferation, migration and clonogenicity. Hoechst and rhodamine assays confirmed the mechanism of pancreatic cancer cell death. Results: The results showed that essential oils exhibited potent cytotoxic activity against MIA PaCa-2 cells with an IC50 (11 ± 2.18 μg/ml). Cell migration was effectively inhibited at (10 μg/ml). Moreover, at a sub-toxic dose (5 μg/mL), essential oils obstructed the colony formation properties of MIA PaCa-2 significantly. The mechanism of cell death was determined due to the induction of nuclear condensation and disruption of mitochondrial membrane potential in the cells. Interestingly, several active components were existed in the chemical profile of the essential oils extract such as β-Caryophyllene, 1-Phenanthrenecarboxylic acid, azulene, naphthalene and Cyclodecene. Conclusion: The present study elucidated for the first time the anti-pancreatic cancer properties of A. crassna essential oils, It can be concluded that the anticancer effects of the extract could be due to the synergistic effect of the biologically active phytoconstituents present in the essential oils
    corecore