2,104 research outputs found

    Comparative analyses of plant responses to drought and salt stress in related taxa: A useful approach to study stress tolerance mechanisms

    Full text link
    Tesis por compendio[EN] Abstract Introduction Salinity and drought are the most important environmental stress conditions reducing crop yields worldwide and limiting the distribution of wild plants in nature. Soil salinity, especially secondary salinity caused by anthropogenic practices, such as prolonged irrigation, lead to substantial agricultural yield losses, especially in arid and semiarid regions. Drought, caused by reduced water content in the soil, occurs due to disorders in nature's water cycle, chiefly when evapotranspiration exceeds precipitation in a certain area, to the point where soil water reserves can no longer support plant growth. Drought and salt stress trigger the activation of a series of basic stress mechanisms that includes among others, the control of ion transport, exclusion and compartmentalization, as well as the accumulation of compatible solutes ('osmolytes'), and the activation of antioxidant systems. These mechanisms are conserved in all plants, stress tolerant and sensitive alike, and don't necessarily confer tolerance. To decipher those mechanisms and have a better understanding on the contribution of different stress responses to the stress tolerance of a given species, we have carried out comparative studies on the responses to drought and salinity in a number of genetically related taxa with different tolerance potentials. Methodology The experimental approach was mostly based on i) establishing the relative tolerance to water and salt stress in the studied species from their distribution in nature (in the case of wild species) and through the relative inhibition of growth in the presence of stress, and ii) correlating changes in the levels of biochemical 'stress markers' associated to specific response pathways (ion transport, osmolyte accumulation¿) upon stress treatments, with the already established relative tolerance to stress. This strategy proved to be appropriate to distinguish mere general responses to stress from those mechanisms relevant for stress tolerance of the investigated species and cultivars. The work also sheds light on other aspects affected by salt stress, specifically regarding germination and reproductive success or anatomical changes in salt-stressed plants. The expression patterns of the gene NHX1, encoding a vacuolar Na+/H+ antiporter were also studied in the Plantago taxa, as a first step in the full characterisation of this ion transporter, that appears to play an important role in the mechanisms of salt tolerance in this genus. Conclusion The results obtained in this work contribute to a better understanding of general stress tolerance mechanisms in plants, and provides clear insights into the mechanisms conferring tolerance, specifically, to drought and salt stress in some wild species and crops. This work also shed more light on the highly efficient responses to stress in halophytes, plants that could be viewed as nature's answer to the aforementioned adverse environmental conditions via evolution and adaptation. Halophytes can therefore be considered as a suitable source - underutilized at present, in our opinion - of knowledge, genetic resources and biotechnological tools for the needed improvement of stress tolerance in crops.[ES] Resumen Introducción La salinidad y la sequía son las condiciones de estrés ambiental más importantes, que reducen los rendimientos de los cultivos en todo el mundo y que limitan la distribución de las plantas silvestres en la naturaleza. La salinidad del suelo, especialmente la salinización secundaria causada por prácticas antropogénicas, como la irrigación prolongada, conducen a pérdidas importantes de rendimiento agrícola, especialmente en las regiones áridas y semiáridas. La sequía, provocada por la reducción de contenido de agua en el suelo, se produce debido a alteraciones en el ciclo del agua en la naturaleza, principalmente cuando la evapotranspiración excede la precipitación en un área determinada, hasta el punto que las reservas de agua del suelo ya no pueden soportar el crecimiento de la planta. La sequía y el estrés salino desencadenan la activación de una serie de mecanismos básicos de respuesta, que incluyen entre otros el control del transporte, la exclusión y la compartimentación de iones, así como la acumulación de solutos compatibles ('osmolitos'), y la activación de sistemas antioxidantes. Estos mecanismos están conservados en todas las plantas, tolerantes y sensibles a estrés por igual, y no confieren necesariamente tolerancia. Para descifrar estos mecanismos y conseguir una mejor comprensión de la contribución de diferentes respuestas a estrés a la tolerancia al estrés en una especie dada, hemos llevado a cabo estudios comparativos sobre las respuestas a la sequía y la salinidad, en un número de taxones relacionados genéticamente con diferentes potenciales de tolerancia. Metodología El enfoque experimental se basó principalmente en i) establecer la tolerancia relativa al estrés hídrico y al estrés salino en las especies estudiadas, a partir de su distribución en la naturaleza (en el caso de especies silvestres) y atendiendo a la inhibición relativa de su crecimiento en presencia de estrés, y ii) correlacionar cambios en los niveles de 'marcadores bioquímicos de estrés' asociados a vías específicas de respuesta (transporte de iones, acumulación de osmolitos ...) inducidos por los tratamientos de estrés, con la tolerancia relativa a estrés de las plantas, previamente establecido. Esta estrategia ha resultado ser apropiada para distinguir meras respuestas generales a estrés de los mecanismos relevantes para la tolerancia a estrés de las especies y cultivares investigados. El trabajo también arroja luz sobre otros aspectos afectados por el estrés salino, específicamente en relación con la germinación y el éxito reproductivo, o cambios anatómicos en las plantas tratadas con sal. También se estudiaron los patrones de expresión del gen NHX1, que codifica un antiportador vacuolar Na+/H+, en las especies de Plantago, como un primer paso en la caracterización completa de este transportador de iones, que parece desempeñar un papel importante en los mecanismos de tolerancia a sal en este género. Conclusión Los resultados obtenidos en este trabajo contribuyen a una mejor comprensión de los mecanismos generales de tolerancia al estrés en plantas, y proporcionan ideas claras sobre los mecanismos que confieren tolerancia, en concreto, a la sequía y al estrés salino, en algunas especies silvestres y cultivadas. Este trabajo también arroja más luz sobre las respuestas a estrés altamente eficientes en halófitas, plantas que podrían ser vistas como la respuesta de la naturaleza a las condiciones ambientales adversas antes mencionadas, a través de la evolución y la adaptación. Por lo tanto, las halófitas pueden ser consideradas como una fuente adecuada - infrautilizada en la actualidad, en nuestra opinión - de conocimiento, recursos genéticos y herramientas biotecnológicas para la necesaria mejora de la tolerancia al estrés en plantas cultivadas.[CA] Resum Introducció La salinitat i la sequera són les condicions d'estrès ambiental més importants, que redueixen els rendiments dels cultius a tot el món i que limiten la distribució de les plantes silvestres en la naturalesa. La salinitat del sòl, especialment la salinització secundària causada per pràctiques antropogèniques, com la irrigació perllongada, condueixen a pèrdues importants de rendiment agrícola, especialment en les regions àrides i semiàrides. La sequera, provocada per la reducció de contingut d'aigua en el sòl, es produeix a causa d'alteracions en el cicle de l'aigua en la naturalesa, principalment quan la evapotranspiració excedeix la precipitació en un àrea determinada, fins al punt que les reserves d'aigua del sòl ja no poden suportar el creixement de la planta. La sequera i l'estrès salí desencadenen l'activació d'una sèrie de mecanismes bàsics de resposta, que inclouen entre uns altres el control del transport, l'exclusió i la compartimentació d'ions, així com l'acumulació de soluts compatibles ('osmolits'), i l'activació de sistemes antioxidants. Aquests mecanismes estan conservats en totes les plantes, tolerants i sensibles a estrès per igual, i no confereixen necessàriament tolerància. Per a desxifrar aquests mecanismes i aconseguir una millor comprensió de la contribució de diferents respostes a estrès a la tolerància a l'estrès en una espècie donada, hem dut a terme estudis comparatius sobre les respostes a la sequera i la salinitat, en un nombre de taxons relacionats genèticament amb diferents potencials de tolerància. Metodologia L'enfocament experimental es va basar principalment en i) establir la tolerància relativa a l'estrès hídric i a l'estrès salí en les espècies estudiades, a partir de la seua distribució en la naturalesa (en el cas d'espècies silvestres) i atenent a la inhibició relativa de el seu creixement en presència d'estrès, i ii) correlacionar canvis en els nivells de 'marcadors bioquímics d'estrès' associats a vies específiques de resposta (transport d'ions, acumulació d'osmolits ...) induïts pels tractaments d'estrès, amb la tolerància relativa a estrès de les plantes, prèviament establert. Aquesta estratègia ha resultat ser apropiada per a distingir meres respostes generals a estrès dels mecanismes rellevants per a la tolerància a estrès de les espècies i conreus investigats. El treball també llança llum sobre altres aspectes afectats per l'estrès salí, específicament en relació amb la germinació i l'èxit reproductiu, o canvis anatòmics en les plantes tractades amb sal. També es van estudiar els patrons d'expressió del gen NHX1, que codifica un anti-portador vacuolar Na+/H+, en les espècies de Plantago, com un primer pas en la caracterització completa d'aquest transportador d'ions, que sembla exercir un paper important en els mecanismes de tolerància a sal en aquest gènere. Conclusió Els resultats obtinguts en aquest treball contribueixen a una millor comprensió dels mecanismes generals de tolerància a l'estrès en plantes, i proporcionen idees clares sobre els mecanismes que confereixen tolerància, en concret, a la sequera i a l'estrès salí, en algunes espècies silvestres i conreades. Aquest treball també llança més llum sobre les respostes a estrès altament eficients en halòfites, plantes que podrien ser vistes com la resposta de la naturalesa a les condicions ambientals adverses abans esmentades, a través de l'evolució i l'adaptació. Per tant, les halòfites poden ser considerades com una font adequada - infrautilitzada en l'actualitat, en la nostra opinió - de coneixement, recursos genètics i eines biotecnològiques per a la necessària millora de la tolerància a l'estrès en plantes conreades.Al Hassan, M. (2016). Comparative analyses of plant responses to drought and salt stress in related taxa: A useful approach to study stress tolerance mechanisms [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61985Compendi

    Impact of awareness, readiness, control, response, and technology usage on crisis management of drones threats in Dubai International Airport

    Get PDF
    Drones offer many advantages but also present risks to sensitive areas like airports. The present study investigates the significant relationship between crisis readiness, crisis awareness, crisis control, and crisis response to crisis management. Specifically, this study examines the interaction of technology usage in the Dubai international airport in the conditions of drone threats. The target population selected for this research equates to the number of both senior and junior staff working at the Dubai international airport. There are thousands of staff working in the various airport operations but no official numbers have been made public. The data for this study came from 364 respondents, and it was gathered through questionnaires that were collected in person. The technique of sample selection is based on convenience. The results show that there is a 63.1% variance in crisis management that can be explained by the four independent factors. The finding further revealed that the ability to respond to a crisis has the best predictive power (Beta = 0.368), followed by crisis awareness (Beta = 0.319), crisis preparedness (Beta = 0.289), and crisis control (Beta = 0.107). The relationship between crisis readiness and moderating influence is not significant, however the other three variables have significant moderating influences. These findings are significant because they assess the Impact of Crisis readiness on Crisis Management, Crisis Awareness and Crisis Control of Drones’ Threats at DIA. The study recommends an investigation into the awareness and readiness in managing drone crises at the UAE Airport to improve effectiveness and also performance of the organization and also speed in responding to growth

    On Quotient Semigroup

    Get PDF
    في هذا البحث، قدمنا نوع جديد من شبه الزمرة يسمى (شبه زمرة القسمة)  في المعادلات التفاضلية مع استخدام التحليل الدالي. شبه الزمرة هذه تكون حل للمعادلات التفاضلية الجزئية على الشكل الاتي:  In this paper, we introduce a new type of semigroup, namely (Quotient semigroup) in differential equations with the functional analytic. This semigroup constructs the solution of the partial differential equations as the form: &nbsp

    Perceived transformational leadership style as determinant of subordinates’ trust perspective of Malaysian local authorities

    Get PDF
    The purpose of this study is to examine the influence of transformational leadership style on subordinates’ trust using 300 questionnaires responded by the employees (support staff group) of local authorities (LAs) located in the central region of peninsular Malaysia.The measurement scale employed in this study has met the acceptable levels of validity and reliability tests of the study.However, performing confirmatory factor analysis based on structural equation modeling (SEM) has remained some items of single component of transformational leadership style.Thus, transformational leadership are measured based on single construct as a first order model analysis.Regression result of SEM analysis indicated that trust was influenced by the transformational leadership style. Further, this study provided the discussions and implications from the findings

    Utilization of waste as a constituent ingredient for enhancing thermal performance of bricks – a review paper

    Get PDF
    In view of the environmental regulations, practitioners have been inclined to use bricks with higher insulation capability, however with minimal attention to sustainable material composition, let alone waste material. From a research perspective, in the wake of the growing concerns for the environment, the use of waste material to develop bricks which can exhibit suitable characteristics attributed to the material composition has been on the rise. However, the extant literature on utilization of waste materials for brick mix design has neglected to provide detailed literature review on the influence of waste materials on the thermal performance of bricks. Methods: This paper provides detailed review of research conducted on thermal properties of bricks produced from various types of waste. Influence of the method of manufacturing and type of waste on thermal performance of bricks is discussed. A sustainability selection criteria format is provided to assist optimal decision making in considering alternative sustainable waste material. Findings: A sustainability selection criteria format is provided to assist optimal decision making in considering alternative sustainable waste material. Applications: The outcome of this paper can serve as a common reference for practitioners and researchers attempting to seek out solutions for further improving overall quality of thermally insulated waste-incorporated bricks, paving the way for more focused research on waste utilization in the development of more sustainable wall material based on the current brick production process

    Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima

    Full text link
    [EN] Antioxidant enzymes; antioxidant phenolics; ecological adaptation; Juncus; malondialdehyde (MDA); photosynthetic pigments; salt stress; water deficiency stress.This work was financed by internal funds for research support of the Polytechnic University of Valencia to M.P.D.-T., M.B. and O.V.Al Hassan, M.; Chaura, J.; Donat-Torres, MP.; Boscaiu, M.; Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants. 9(2):1-20. https://doi.org/10.1093/aobpla/plx009S12092Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling & Behavior, 5(4), 369-374. doi:10.4161/psb.5.4.10873Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3Al Hassan, M., López-Gresa, M. del P., Boscaiu, M., & Vicente, O. (2016). Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology, 43(10), 949. doi:10.1071/fp16007Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331-1341. doi:10.1093/jxb/53.372.1331Anschütz, U., Becker, D., & Shabala, S. (2014). Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology, 171(9), 670-687. doi:10.1016/j.jplph.2014.01.009Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701Asada, K. (2006). Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions: Figure 1. Plant Physiology, 141(2), 391-396. doi:10.1104/pp.106.082040Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410Bautista, I., Boscaiu, M., Lidón, A., Llinares, J. V., Lull, C., Donat, M. P., … Vicente, O. (2015). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum, 38(1). doi:10.1007/s11738-015-2025-2Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852Boira, H. (1995). Edaphic characteristics of salt meadow vegetation in the eastern regions of Spain. Ecologia mediterranea, 21(3), 1-11. doi:10.3406/ecmed.1995.1789Boscaiu, M., Ballesteros, G., Naranjo, M. A., Vicente, O., & Boira, H. (2011). Responses to salt stress in Juncus acutus and J. maritimus during seed germination and vegetative plant growth. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 145(4), 770-777. doi:10.1080/11263504.2011.628446Boscaiu, M., Lull, C., Llinares, J., Vicente, O., & Boira, H. (2012). Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 6(2), 177-186. doi:10.1093/jpe/rts017Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241-1257. doi:10.1093/jxb/ert430Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. doi:10.1016/s0168-9452(01)00452-6Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351Cramer, G., Alberico, G., & Schmidt, C. (1994). Leaf Expansion Limits Dry Matter Accumulation of Salt-Stressed Maize. Functional Plant Biology, 21(5), 663. doi:10.1071/pp9940663Del Rio, L. A., Palma, J. M., Sandalio, L. M., Corpas, F. J., Pastori, G. M., Bueno, P., & López-Huertas, E. (1996). Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochemical Society Transactions, 24(2), 434-438. doi:10.1042/bst0240434Demidchik, V., Cuin, T. A., Svistunenko, D., Smith, S. J., Miller, A. J., Shabala, S., … Yurin, V. (2010). Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science, 123(9), 1468-1479. doi:10.1242/jcs.064352Demidchik, V., & Maathuis, F. J. M. (2007). Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytologist, 175(3), 387-404. doi:10.1111/j.1469-8137.2007.02128.xDemidchik, V., Shabala, S. N., & Davies, J. M. (2007). Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal, 49(3), 377-386. doi:10.1111/j.1365-313x.2006.02971.xDEMIRAL, T., & TURKAN, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. doi:10.1016/j.envexpbot.2004.03.017Dunson, W. A., & Travis, J. (1991). The Role of Abiotic Factors in Community Organization. The American Naturalist, 138(5), 1067-1091. doi:10.1086/285270Ellouzi, H., Ben Hamed, K., Cela, J., Munné-Bosch, S., & Abdelly, C. (2011). Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum, 142(2), 128-143. doi:10.1111/j.1399-3054.2011.01450.xFarah, A., & Donangelo, C. M. (2006). Phenolic compounds in coffee. Brazilian Journal of Plant Physiology, 18(1), 23-36. doi:10.1590/s1677-04202006000100003Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.xFoyer, C. H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum, 119(3), 355-364. doi:10.1034/j.1399-3054.2003.00223.xFoyer, C. H., & Noctor, G. (2005). Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. The Plant Cell, 17(7), 1866-1875. doi:10.1105/tpc.105.033589Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016Gong, Q., Li, P., Ma, S., Indu Rupassara, S., & Bohnert, H. J. (2005). Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. The Plant Journal, 44(5), 826-839. doi:10.1111/j.1365-313x.2005.02587.xHarinasut, P., Poonsopa, D., Roengmongkol, K., & Charoensataporn, R. (2003). ScienceAsia, 29(2), 109. doi:10.2306/scienceasia1513-1874.2003.29.109Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. doi:10.1146/annurev.arplant.51.1.463Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524Horling, F., Lamkemeyer, P., König, J., Finkemeier, I., Kandlbinder, A., Baier, M., & Dietz, K.-J. (2003). Divergent Light-, Ascorbate-, and Oxidative Stress-Dependent Regulation of Expression of the Peroxiredoxin Gene Family in Arabidopsis. Plant Physiology, 131(1), 317-325. doi:10.1104/pp.010017Hummel, I., Pantin, F., Sulpice, R., Piques, M., Rolland, G., Dauzat, M., … Muller, B. (2010). Arabidopsis Plants Acclimate to Water Deficit at Low Cost through Changes of Carbon Usage: An Integrated Perspective Using Growth, Metabolite, Enzyme, and Gene Expression Analysis. Plant Physiology, 154(1), 357-372. doi:10.1104/pp.110.157008Inan, G., Zhang, Q., Li, P., Wang, Z., Cao, Z., Zhang, H., … Zhu, J.-K. (2004). Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles. Plant Physiology, 135(3), 1718-1737. doi:10.1104/pp.104.041723Jaspers, P., & Kangasjärvi, J. (2010). Reactive oxygen species in abiotic stress signaling. Physiologia Plantarum, 138(4), 405-413. doi:10.1111/j.1399-3054.2009.01321.xKANT, S., KANT, P., RAVEH, E., & BARAK, S. (2006). Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant, Cell and Environment, 29(7), 1220-1234. doi:10.1111/j.1365-3040.2006.01502.xKukreja, S., Nandwal, A. S., Kumar, N., Sharma, S. K., Sharma, S. K., Unvi, V., & Sharma, P. K. (2005). Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biologia plantarum, 49(2), 305-308. doi:10.1007/s10535-005-5308-4Larkindale, J., & Huang, B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology, 161(4), 405-413. doi:10.1078/0176-1617-01239Lee, S.-H., Ahsan, N., Lee, K.-W., Kim, D.-H., Lee, D.-G., Kwak, S.-S., … Lee, B.-H. (2007). Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. Journal of Plant Physiology, 164(12), 1626-1638. doi:10.1016/j.jplph.2007.01.003LI, R., GUO, P., Michael, B., Stefania, G., & Salvatore, C. (2006). Evaluation of Chlorophyll Content and Fluorescence Parameters as Indicators of Drought Tolerance in Barley. Agricultural Sciences in China, 5(10), 751-757. doi:10.1016/s1671-2927(06)60120-xLICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591MAATHUIS, F. (1999). K+Nutrition and Na+Toxicity: The Basis of Cellular K+/Na+Ratios. Annals of Botany, 84(2), 123-133. doi:10.1006/anbo.1999.0912Martinez, C. A., Loureiro, M. E., Oliva, M. A., & Maestri, M. (2001). Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant Science, 160(3), 505-515. doi:10.1016/s0168-9452(00)00418-0Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133(3), 481-489. doi:10.1111/j.1399-3054.2008.01090.xMittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490-498. doi:10.1016/j.tplants.2004.08.009Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. doi:10.1016/s1360-1385(02)02312-9MITTOVA, V., TAL, M., VOLOKITA, M., & GUY, M. (2003). Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant, Cell & Environment, 26(6), 845-856. doi:10.1046/j.1365-3040.2003.01016.xMittova, V., Volokita, M., Guy, M., & Tal, M. (2000). Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum, 110(1), 42-51. doi:10.1034/j.1399-3054.2000.110106.xMunns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.xMunns, R., & Termaat, A. (1986). Whole-Plant Responses to Salinity. Functional Plant Biology, 13(1), 143. doi:10.1071/pp9860143Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2015). The effects of induced production of reactive oxygen species in organelles on endoplasmic reticulum stress and on the unfolded protein response in arabidopsis. Annals of Botany, 116(4), 541-553. doi:10.1093/aob/mcv072Pan, Y., Wu, L. J., & Yu, Z. L. (2006). Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation, 49(2-3), 157-165. doi:10.1007/s10725-006-9101-yParida, A. K., Das, A. B., Sanada, Y., & Mohanty, P. (2004). Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquatic Botany, 80(2), 77-87. doi:10.1016/j.aquabot.2004.07.005Quiles, M. J., & López, N. I. (2004). Photoinhibition of photosystems I and II induced by exposure to high light intensity during oat plant growth. Plant Science, 166(3), 815-823. doi:10.1016/j.plantsci.2003.11.025Richards, S. L., Laohavisit, A., Mortimer, J. C., Shabala, L., Swarbreck, S. M., Shabala, S., & Davies, J. M. (2013). Annexin 1 regulates the H2O2-induced calcium signature inArabidopsis thalianaroots. The Plant Journal, 77(1), 136-145. doi:10.1111/tpj.12372Rossel, J. B. (2002). Global Changes in Gene Expression in Response to High Light in Arabidopsis. PLANT PHYSIOLOGY, 130(3), 1109-1120. doi:10.1104/pp.005595SAI KACHOUT, S., JAFFEL HAMZA, K., KARRAY BOURAOUI, N., LECLERC, J. C., & OUERGHI, Z. (2013). Salt-Induced Changes in Antioxidative Enzyme Activities in Shoot Tissues of Two Atriplex Varieties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 115. doi:10.15835/nbha4118258Sanders, D. (2000). Plant biology: The salty tale of Arabidopsis. Current Biology, 10(13), R486-R488. doi:10.1016/s0960-9822(00)00554-6Seckin, B., Turkan, I., Sekmen, A. H., & Ozfidan, C. (2010). The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 69(1), 76-85. doi:10.1016/j.envexpbot.2010.02.013Hediye Sekmen, A., Türkan, İ., & Takio, S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum, 131(3), 399-411. doi:10.1111/j.1399-3054.2007.00970.xShabala, S. (2009). Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. Journal of Experimental Botany, 60(3), 709-712. doi:10.1093/jxb/erp013Shalata, A., Mittova, V., Volokita, M., Guy, M., & Tal, M. (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiologia Plantarum, 112(4), 487-494. doi:10.1034/j.1399-3054.2001.1120405.xSharma, P., & Shanker Dubey, R. (2005). Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. Journal of Plant Physiology, 162(8), 854-864. doi:10.1016/j.jplph.2004.09.011Uchida, A., Jagendorf, A. T., Hibino, T., Takabe, T., & Takabe, T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 163(3), 515-523. doi:10.1016/s0168-9452(02)00159-0Chang-Quan, W., & Rui-Chang, L. (2008). Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress. Acta Physiologiae Plantarum, 30(6), 841-847. doi:10.1007/s11738-008-0189-8Wang, L., Zhou, Q., Ding, L., & Sun, Y. (2008). Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Journal of Hazardous Materials, 154(1-3), 818-825. doi:10.1016/j.jhazmat.2007.10.097Yang, Y., Han, C., Liu, Q., Lin, B., & Wang, J. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiologiae Plantarum, 30(4), 433-440. doi:10.1007/s11738-008-0140-zYu, T., Jhun, B. S., & Yoon, Y. (2011). High-Glucose Stimulation Increases Reactive Oxygen Species Production Through the Calcium and Mitogen-Activated Protein Kinase-Mediated Activation of Mitochondrial Fission. Antioxidants & Redox Signaling, 14(3), 425-437. doi:10.1089/ars.2010.3284Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0Zlatev, Z. S., Lidon, F. C., Ramalho, J. C., & Yordanov, I. T. (2006). Comparison of resistance to drought of three bean cultivars. Biologia plantarum, 50(3), 389-394. doi:10.1007/s10535-006-0054-

    The mainstream cosmetics industry in Malaysia and the emergence, growth, and prospects of halal cosmetics

    Get PDF
    Muslims all over the world are almost totally dependent on cosmetics products made by non-Muslims. Moreover, Muslims seem to have taken the back seat when it comes to the cosmetics industry which is dominated, and to a certain degree monopolized, by non-Muslims. Thus, the issue of Halal ingredients in cosmetics products poses serious challenges. On the other hand, the growing consumer awareness and hence demand for Halal products, not just Halal food and drink, has provoked existing and new players in the cosmetics industry to make Halal products. However, in the global cosmetics industry there is a new trend that is the wave of Halal cosmetics and personal care products. The increasing number of Muslims around the world and the raise of awareness among their recent generations are two crucial reasons behind the new trend in the change of behaviors among Muslim consumers. The faith-based new wave in the global cosmetics market may be reflected in the recent change in the global scenario. Since the Muslim consumers constitute nearly 20% of the population of the world, they started pushing the mainstream cosmetics industry to listen to their voice and satisfy their needs in offering Shariah-compliant products

    Mechanisms of Response to Salt Stress in Oleander (Nerium oleander L.)

    Get PDF
    [EN] mulation, activation of antioxidant systems), have been studied in Nerium oleander, a xerophytic species widely used as ornamental. Salt strongly inhibited growth, but the plants survived one month in the presence of 800 mM NaCl, indicating that the species is also relatively resistant to salt stress. Salt induced a slight increase in the levels of proline, glycine betaine and soluble sugars; the latter compounds showed much higher absolute contents, suggesting a functional role in osmotic adjustment, and the presence of constitutive mechanisms of response to salt stress. High salinity generated oxidative stress in the plants, as shown by the increase of malondialdehyde levels. Antioxidant systems, enzymatic andKumar, D.; Al Hassan, M.; Vicente Meana, Ó.; Agrawal, V.; Boscaiu Neagu, MT. (2016). Mechanisms of Response to Salt Stress in Oleander (Nerium oleander L.). BULLETIN OF UNIVERSITY OF AGRICULTURAL SCIENCES AND VETERINARY MEDICINE. 73(2):249-251. doi:10.15835/buasvmcn-hort:12287S24925173
    corecore