58 research outputs found

    The Paleogene Ophiolite Conundrum of the Iran-Iraq Border Region

    Get PDF
    New and compiled geochemical, isotopic and geochronological data allow us to propose a new explanation for Paleogene oceanicmagmatic rocks alongtheIran–Iraqborder.These rocks are represented byathick pile(>1000 m) ofpillow lavas and pelagic sediments and underlying plutonic rocks. These are sometimes argued to represent a Paleogene ophiolite but there are no associated mantle rocks. Integrated zircon U–Pb ages, bulk rock major and trace element and radiogenic isotope data indicate that these rocks are more likely related to forearc rifting due to extreme extension during Late Paleogene time whichalsotriggeredhigh-fluxmagmatismintheUrumieh–DokhtarMagmaticBeltandexhumationofcorecomplexesinIran. These observations are most consistent with formation of the Paleogene oceanic igneous rocks in a >220 km long forearc rift zone

    Zircon U-Pb, geochemical and isotopic constraints on the age and origin of A- and I-type granites and gabbro-diorites from NW Iran

    Get PDF
    Highlights ‱ There are Late Cretaceous granitoids and Paleocene A-type granites in NW Iran. ‱ Different mechanisms are suggested for genesis of granitoids and A-type granites. ‱ Subduction initiation and extension generated granitoids during the Late Cretaceous. Abstract The continental crust of NW Iran is intruded by Late Cretaceous I-type granites and gabbro-diorites as well as Paleocene A-type granites. SIMS and LA-ICPMS U-Pb analyses of zircons yield ages of 100–92 Ma (Late Cretaceous) for I-type granites and gabbro-diorites and 61–63 Ma (Paleocene) for A-type granites. Late Cretaceous gabbro-diorites (including mafic microgranular enclaves; MMEs) from NW Iran show variably evolved signatures. They show depletion in Nb and Ta on N-MORB-normalized trace-element spider-diagrams and have high Th/Yb ratios, suggesting their precursor magmas were generated in a subduction-related environment. Gabbro-diorites have variable zircon ΔHf(t) values of +1.2 to +8, ÎŽ18O of 6.4 to 7.4‰ and bulk rock ΔNd(t) of −1.4 to ~ +4.9. The geochemical and isotopic data attest to melting of subcontinental lithospheric mantle (SCLM) to generate near-primitive gabbros with radiogenic Nd isotopes (ΔNd(t) = ~ +4.9) and high Nb/Ta and Zr/Hf ratios, similar to mantle melts (Nb/Ta ~ 17 and Zr/Hf ~ 38). These mafic melts underwent further fractionation and mixing with crustal melts to generate Late Cretaceous evolved gabbro-diorites. Geochemical data for I-type granites indicate both Nb-Ta negative and positive anomalies along with enrichment in light REEs. These rocks are peraluminous and have variable bulk-rock ΔNd(t) (−1.4 to +1.3), zircon ΔHf(t) (+2.8 to +10.4) and ÎŽ18O (4.7–7.3‰) values, but radiogenic bulk rock Pb isotopes. The geochemical and isotopic signatures of these granites suggest interaction of mantle-derived mafic magmas (similar to near-primitive Oshnavieh gabbros) with middle-upper crust through assimilation-fractional crystallization (AFC) to produce Late Cretaceous I-type granites. Paleocene A-type granites have distinctive geochemical features compared to I-type granitoids, including enrichment in Nb-Ta, high bulk rock ΔNd(t) (+3.3 to +3.9) and zircon ΔHf(t) (+5.1 − +9.9) values. Alkaline granites are ferroan; they have low MgO, CaO, Sr, Ba and Eu concentrations and high total Fe2O3, K2O, Na2O, Al2O3, Ga, Zr, Nb-Ta, Th and rare earth element (REE) abundances and Ga/Al ratios. These rocks might be related to fractionation of a melt derived from a sub-continental lithospheric mantle, but which interacted with asthenosphere-derived melts. We suggest that subduction initiation and the resultant slab roll-back caused extreme extension in the overlying Iranian plate, induced convection in the mantle wedge and led to the decompression melting of SCLM. Rising mantle-derived magmas assimilated middle-upper crustal rocks. Fractionating mantle-derived magmas and contamination with crustal components produced evolved gabbro-diorites and I-type granites. In contrast, asthenospheric upwelling during the Paleocene provided heat for melting and interaction with SCLM to generate the precursor melts to the A-type granites

    Subduction initiation and back-arc opening north of Neo-Tethys: Evidence from the Late Cretaceous Torbat-e-Heydarieh ophiolite of NE Iran

    Get PDF
    How new subduction zones form is an ongoing scientific question with key implications for our understanding of how this process influences the behavior of the overriding plate. Here we focus on the effects of a Late Cretaceous subduction-initiation (SI) event in Iran and show how SI caused enough extension to open a back-arc basin in NE Iran. The Late Cretaceous Torbat-e-Heydarieh ophiolite (THO) is well exposed as part of the Sabzevar-Torbat-e-Heydarieh ophiolite belt. It is dominated by mantle peridotite, with a thin crustal sequence. The THO mantle sequence consists of harzburgite, clinopyroxene-harzburgite, plagioclase lherzolite, impregnated lherzolite, and dunite. Spinel in THO mantle peridotites show variable Cr# (10−63), similar to both abyssal and fore-arc peridotites. The igneous rocks (gabbros and dikes intruding mantle peridotite, pillowed and massive lavas, amphibole gabbros, plagiogranites and associated diorites, and diabase dikes) display rare earth element patterns similar to MORB, arc tholeiite and back-arc basin basalt. Zircons from six samples, including plagiogranites and dikes within mantle peridotite, yield U-Pb ages of ca. 99−92 Ma, indicating that the THO formed during the Late Cretaceous and was magmatically active for ∌7 m.y. THO igneous rocks have variable ΔNd(t) of +5.7 to +8.2 and ΔHf(t) ranging from +14.9 to +21.5; zircons have ΔHf(t) of +8.1 to +18.5. These isotopic compositions indicate that the THO rocks were derived from an isotopically depleted mantle source similar to that of the Indian Ocean, which was slightly affected by the recycling of subducted sediments. We conclude that the THO and other Sabzevar-Torbat-e-Heydarieh ophiolites formed in a back-arc basin well to the north of the Late Cretaceous fore-arc, now represented by the Zagros ophiolites, testifying that a broad region of Iran was affected by upper-plate extension accompanying Late Cretaceous subduction initiation

    Neotethyan Subduction Ignited the Iran Arc and Backarc Differently

    Get PDF
    Most arcs show systematic temporal and spatial variations in magmatism with clear shifts in igneous rock compositions between those of the magmatic front (MF) and those in the backarc (BA). It is unclear if similar magmatic polarity is seen for extensional continental arcs. Herein, we use geochemical and isotopic characteristics coupled with zircon U‐Pb geochronology to identify the different magmatic style of the Iran convergent margin, an extensional system that evolved over 100 Myr. Our new and compiled U‐Pb ages indicate that major magmatic episodes for the NE Iran BA occurred at 110–80, 75–50, 50–35, 35–20, and 15–10 Ma. In contrast to NE Iran BA magmatic episodes, compiled data from MF display two main magmatic episodes at 95–75 and 55–5 Ma, indicating more continuous magmatism for the MF than for the BA. We show that Paleogene Iran serves as a useful example of a continental arc under extension. Our data also suggest that there is not a clear relationship between the subduction velocity of Neotethyan Ocean beneath Iran and magmatic activity in Iran. Our results imply that the isotopic compositions of Iran BA igneous rocks do not directly correspond to the changes in tectonic processes or geodynamics, but other parameters such as the composition of lithosphere and melt source(s) should be considered. In addition, changes in subduction zone dynamics and contractional versus extensional tectonic regimes influenced the composition of MF and BA magmatic rocks. These controls diminished the geochemical and isotopic variations between the magmatic front and backarc

    Subduction initiation causes broad upper plate extension: The Late Cretaceous Iran example

    No full text
    Highlights ‱ Subduction initiation (SI) is a mechanism for forming Neotethyan ophiolites. ‱ Ophiolites of Iran show SI exerts extensional stress on the overlying plate. ‱ SI-related extension can affect broad regions of the overriding plate. Abstract Subduction initiation (SI) requires the sinking of one plate beneath another and this exerts extensional stress on the overlying plate. How broad a region is affected by SI-related extension is unclear because most of the clearest SI examples– such as Izu-Bonin-Mariana arc– are deep under the ocean. A major SI event is recorded in the Late Cretaceous forearc ophiolites of Iran, related to the subduction of Neotethyan oceanic lithosphere beneath Eurasia. This caused extreme extension of the Iranian plate, up to ~1000 km away from the proto-trench and generated a series of back-arc oceanic basins, sedimentary basins, and core complexes and exhumed high-P rocks. The Late Cretaceous Iran example shows that SI can cause strong extension over a much wider region of the overriding plate than heretofore imagined and offers an accessible natural laboratory for studying SI processes. This understanding also provides an attractive new explanation for the origin of the South Caspian Sea

    Ophiolites of Iran : keys to understanding the tectonic evolution of SW Asia : (I) Paleozoic ophiolites

    No full text
    Iran is a mosaic of Ediacaran-Cambrian (Cadomian; 520-600. Ma) blocks, stitched together by Paleozoic and Mesozoic ophiolites. In this paper we summarize the Paleozoic ophiolites of Iran for the international geoscientific audience including field, chemical and geochronological data from the literature and our own unpublished data. We focus on the five best known examples of Middle to Late Paleozoic ophiolites which are remnants of Paleotethys, aligned in two main zones in northern Iran: Aghdarband, Mashhad and Rasht in the north and Jandagh-Anarak and Takab ophiolites to the south. Paleozoic ophiolites were emplaced when N-directed subduction resulted in collision of Gondwana fragment "Cimmeria" with Eurasia in Permo-Triassic time. Paleozoic ophiolites show both SSZ- and MORB-type mineralogical and geochemical signatures, perhaps reflecting formation in a marginal basin. Paleozoic ophiolites of Iran suggest a progression from oceanic crust formation above a subduction zone in Devonian time to accretionary convergence in Permian time. The Iranian Paleozoic ophiolites along with those of the Caucausus and Turkey in the west and Afghanistan, Turkmenistan and Tibet to the east, define a series of diachronous subduction-related marginal basins active from at least Early Devonian to Late Permian time.20 page(s

    Ophiolites of Iran : keys to understanding the tectonic evolution of SW Asia : (II) Mesozoic ophiolites

    No full text
    Iran is a mosaic of continental terranes of Cadomian (520-600 Ma) age, stitched together along sutures decorated by Paleozoic and Mesozoic ophiolites. Here we present the current understanding of the Mesozoic (and rare Cenozoic) ophiolites of Iran for the international geoscientific audience. We summarize field, chemical and geochronological data from the literature and our own unpublished data. Mesozoic ophiolites of Iran are mostly Cretaceous in age and are related to the Neotethys and associated backarc basins on the S flank of Eurasia. These ophiolites can be subdivided into five belts: 1. Late Cretaceous Zagros outer belt ophiolites (ZOB) along the Main Zagros Thrust including Late Cretaceous-Early Paleocene Maku-Khoy-Salmas ophiolites in NW Iran as well as Kermanshah-Kurdistan, Neyriz and Esfandagheh (Haji Abad) ophiolites, also Late Cretaceous-Eocene ophiolites along the Iraq-Iran border; 2. Late Cretaceous Zagros inner belt ophiolites (ZIB) including Nain, Dehshir, Shahr-e-Babak and Balvard-Baft ophiolites along the southern periphery of the Central Iranian block and bending north into it; 3. Late Cretaceous-Early Paleocene Sabzevar-Torbat-e-Heydarieh ophiolites of NE Iran; 4. Early to Late Cretaceous Birjand-Nehbandan-Tchehel-Kureh ophiolites in eastern Iran between the Lut and Afghan blocks; and 5. Late Jurassic-Cretaceous Makran ophiolites of SE Iran including Kahnuj ophiolites. Most Mesozoic ophiolites of Iran show supra-subduction zone (SSZ) geochemical signatures, indicating that SW Asia was a site of plate convergence during Late Mesozoic time, but also include a significant proportion showing ocean-island basalt affinities, perhaps indicating the involvement of subcontinental lithospheric mantle.29 page(s

    Geodynamic evolution of Upper Cretaceous Zagros ophiolites : formation of oceanic lithosphere above a nascent subduction zone

    No full text
    The Zagros fold-and-thrust belt of SW Iran is a young continental convergence zone, extending NW–SE from eastern Turkey through northern Iraq and the length of Iran to the Strait of Hormuz and into northern Oman. This belt reflects the shortening and off-scraping of thick sediments from the northern margin of the Arabian platform, essentially behaving as the accretionary prism for the Iranian convergent margin. Distribution of Upper Cretaceous ophiolites in the Zagros orogenic belt defines the northern limit of the evolving suture between Arabia and Eurasia and comprises two parallel belts: (1) Outer Zagros Ophiolitic Belt (OB) and (2) Inner Zagros Ophiolitic Belt (IB). These belts contain complete (if disrupted) ophiolites with well-preserved mantle and crustal sequences. Mantle sequences include tectonized harzburgite and rare ultramafic–mafic cumulates as well as isotropic gabbro lenses and isolated dykes within the harzburgite. Crustal sequences include rare gabbros (mostly in IB ophiolites), sheeted dyke complexes, pillowed lavas and felsic rocks. All Zagros ophiolites are overlain by Upper Cretaceous pelagic limestone. Limited radiometric dating indicates that the OB and IB formed at the same time during Late Cretaceous time. IB and OB components show strong suprasubduction zone affinities, from mantle harzburgite to lavas. This is shown by low whole-rock Al₂O₃ and CaO contents and spinel and orthopyroxene compositions of mantle peridotites as well as by the abundance of felsic rocks and the trace element characteristics of the lavas. Similarly ages, suprasubduction zone affinities and fore-arc setting suggest that the IB and OB once defined a single tract of fore-arc lithosphere that was disrupted by exhumation of subducted Sanandaj–Sirjan Zone metamorphic rocks. Our data for the OB and IB along with better-studied ophiolites in Cyprus, Turkey and Oman compel the conclusion that a broad and continuous tract of fore-arc lithosphere was created during Late Cretaceous time as the magmatic expression of a newly formed subduction zone developed along the SW margin of Eurasia.40 page(s

    U-Pb zircon ages of Late Cretaceous Nain-Dehshir ophiolites, central Iran

    No full text
    Late Cretaceous Zagros ophiolites are part of the c. 3000 km long Late Cretaceous Ophiolite Belt of SW Asia including the Troodos (Cyprus), eastern Mediterranean (Turkey, Syria), Zagros (Iran) and Semail ophiolites (Oman). This ophiolite belt represents a magmatic forearc that formed when subduction of the Neotethys began along the SW margin of Eurasia. Geochronological data for Zagros ophiolites are limited to a few K-Ar and ⁎⁰Ar-ÂłâčAr ages. New thermal ionization mass spectrometry U-Pb zircon ages indicate that the Nain and Dehshir ophiolites of central Iran formed c. 101-103 Ma, with Nain (102.9 ± 0.3 Ma) being c. 1 Ma older than Dehshir (100.9 ± 0.2 Ma; 100.4 ± 0.1 Ma), and that these ophiolites were emplaced almost immediately after formation (Nain emplacement 101.2 ± 0.2 Ma; Dehshir emplacement 99.0 ± 1.1 Ma). These formation ages are significantly older than the 98-90 Ma U-Pb zircon ages of other Late Cretaceous ophiolites in this belt such as the Kizildag (Turkey), Semail (Oman) and Troodos ophiolites (Cyprus). If the subduction initiation model applies to this ophiolite belt, it suggests that subduction initiation began near the Zagros margin and propagated at c. 7 cm a⁻Âč to the east (Semail) and c. 15 cm a⁻Âč to the west (Troodos).10 page(s
    • 

    corecore