234 research outputs found
Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry
International audienceContinuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS) were carried out in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area ? 2006 campaign (MCMA-2006) between 7?27 March, 2006. Biomass and organic carbon (OC) particle types were found to dominate the accumulation mode both day and night. The concentrations of both organic carbon and biomass particles were roughly equal early in the morning, but biomass became the largest contributor to the accumulation mode mass from the late morning until early evening. The diurnal pattern can be attributed to aging and/or a change in meteorology. Fresh elemental carbon (EC) particles were observed during rush hour. The majority of the EC particles were mixed with nitrate, sulfate, organic carbon and potassium. Submicron particles from industrial sources in the northeast were composed of an internal mixture of Pb, Zn, EC and Cl and peaked early in the morning. A unique nitrogen-containing organic (NOC) particle type was observed, and is hypothesized to be from industrial emissions based on the temporal profile and back trajectory analysis. This study provides unique insights into the real-time changes in single particle mixing state as a function of size and time for aerosols in Mexico City. These new findings indicate that biomass burning and industrial operations make significant contributions to particles in Mexico City. These sources have received relatively little attention in previous intensive field campaigns
Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry
Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS) were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006). Results are presented for the period of 15â27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC) mixed with nitrate and sulfate, elemental carbon (EC), nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42%) which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2â6 a.m.) showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2â3μm size range. A unique nitrogen-containing organic carbon (NOC) particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30â10 a.m.) showed the greatest contributions from industrial emissions. During mid to late mornings (7â11 a.m.), weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m.), resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh biomass particles. The highest wind speeds were correlated with the highest number fraction of fresh biomass particles (up to 76% of the submicron number fraction) when winds were coming directly from fires that were located south and southeast of the city based on MODIS fire count data. This study provides a unique clock of hourly changes in single particle mixing state and sources as a function of meteorology in Mexico City. These new findings indicate that biomass burning and industrial emissions can make significant contributions to primary particle loadings in Mexico City that are strongly coupled with local meteorology
Observation of playa salts as nuclei in orographic wave clouds
During the Ice in Clouds Experiment-Layer Clouds (ICE-L), dry lakebed, or playa, salts from the Great Basin region of the United States were observed as cloud nuclei in orographic wave clouds over Wyoming. Using a counterflow virtual impactor in series with a single-particle mass spectrometer, sodium-potassium-magnesium-calcium-chloride salts were identified as residues of cloud droplets. Importantly, these salts produced similar mass spectral signatures to playa salts with elevated cloud condensation nuclei (CCN) efficiencies close to sea salt. Using a suite of chemical characterization instrumentation, the playa salts were observed to be internally mixed with oxidized organics, presumably produced by cloud processing, as well as carbonate. These salt particles were enriched as residues of large droplets (>19 ÎŒm) compared to smaller droplets (>7 ÎŒm). In addition, a small fraction of silicate-containing playa salts were hypothesized to be important in the observed heterogeneous ice nucleation processes. While the high CCN activity of sea salt has been demonstrated to play an important role in cloud formation in marine environments, this study provides direct evidence of the importance of playa salts in cloud formation in continental North America has not been shown previously. Studies are needed to model and quantify the impact of playas on climate globally, particularly because of the abundance of playas and expected increases in the frequency and intensity of dust storms in the future due to climate and land use changes
Spectro-microscopic measurements of carbonaceous aerosol aging in Central California
Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of the Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of a pollution accumulation event (27–29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer-controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near-edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm equivalent circular diameter) increased with plume age, as did the organic mass per particle. Comparison of the CARES spectro-microscopic dataset with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that fresh particles in Mexico City contained three times as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (ranging from 16.6 to 47.3%) was larger than at the CARES urban site (13.4–15.7%), and the most aged samples from CARES contained fewer carbonâcarbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements will allow for a comprehensive evaluation of aerosol process models used in climate research
Aerosol Mixing State: Measurements, Modeling, and Impacts
Atmospheric aerosols are complex mixtures of different chemical species, and individual particles exist in many different shapes and morphologies. Together, these characteristics contribute to the aerosol mixing state. This review provides an overview of measurement techniques to probe aerosol mixing state, discusses how aerosol mixing state is represented in atmospheric models at different scales, and synthesizes our knowledge of aerosol mixing stateâs impact on climateârelevant properties, such as cloud condensation and ice nucleating particle concentrations, and aerosol optical properties. We present these findings within a framework that defines aerosol mixing state along with appropriate mixing state metrics to quantify it. Future research directions are identified, with a focus on the need for integrating mixing state measurements and modeling.Key PointsWe define aerosol mixing state and connect it to the physicochemical properties of aerosol particlesWe discuss existing measurements and models to understand chemical and physicochemical mixing stateWe explain the connection between aerosol mixing state and climateârelevant aerosol propertiesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150540/1/rog20184_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150540/2/rog20184.pd
Acupuncture for chronic neck pain: a pilot for a randomised controlled trial
Background: Acupuncture is increasingly being used for many conditions including chronic neck pain. However the evidence remains inconclusive, indicating the need for further well-designed research. The aim of this study was to conduct a pilot randomised controlled parallel arm trial, to establish key features required for the design and implementation of a large-scale trial on acupuncture for chronic neck pain. Methods: Patients whose GPs had diagnosed neck pain were recruited from one general practice, and randomised to receive usual GP care only, or acupuncture ( up to 10 treatments over 3 months) as an adjunctive treatment to usual GP care. The primary outcome measure was the Northwick Park Neck Pain Questionnaire (NPQ) at 3 months. The primary analysis was to determine the sample size for the full scale study. Results: Of the 227 patients with neck pain identified from the GP database, 28 (12.3%) consenting patients were eligible to participate in the pilot and 24 (10.5%) were recruited to the trial. Ten patients were randomised to acupuncture, receiving an average of eight treatments from one of four acupuncturists, and 14 were randomised to usual GP care alone. The sample size for the full scale trial was calculated from a clinically meaningful difference of 5% on the NPQ and, from this pilot, an adjusted standard deviation of 15.3%. Assuming 90% power at the 5% significance level, a sample size of 229 would be required in each arm in a large-scale trial when allowing for a loss to follow-up rate of 14%. In order to achieve this sample, one would need to identify patients from databases of GP practices with a total population of 230,000 patients, or approximately 15 GP practices roughly equal in size to the one involved in this study (i.e. 15,694 patients). Conclusion: This pilot study has allowed a number of recommendations to be made to facilitate the design of a large-scale trial, which in turn will help to clarify the existing evidence base on acupuncture for neck pain
Old divergence and restricted gene flow between torrent duck ( Merganetta armata ) subspecies in the Central and Southern Andes
Aim: To investigate the structure and rate of gene flow among populations of habitatâspecialized species to understand the ecological and evolutionary processes underpinning their population dynamics and historical demography, including speciation and extinction.Location: Peruvian and Argentine Andes.Taxon: Two subspecies of torrent duck (Merganetta armata).Methods: We sampled 156 individuals in Peru (M. a. leucogenis; ChillĂłn River, n = 57 and Pachachaca River, n = 49) and Argentina (M. a. armata; Arroyo Grande River, n = 33 and MalargĂŒe River, n = 17), and sequenced the mitochondrial DNA (mtDNA) control region to conduct coarse and fineâscale demographic analyses of population structure. Additionally, to test for differences between subspecies, and across genetic markers with distinct inheritance patterns, a subset of individuals (Peru, n = 10 and Argentina, n = 9) was subjected to partial genome resequencing, obtaining 4,027 autosomal and 189 Zâlinked doubleâdigest restrictionâassociated DNA sequences.Results: Haplotype and nucleotide diversities were higher in Peru than Argentinaacross all markers. Peruvian and Argentine subspecies showed concordant speciesâlevel differences (ΊST mtDNA= 0.82;ΊST autosomal = 0.30;ΊST Z chromosome = 0.45),including no shared mtDNA haplotypes. Demographic parameters estimated formtDNA using IM and IMa2 analyses, and for autosomal markers using âaâi (isolationâwithâmigration model), supported an old divergence (mtDNA = 600,000 years before present (ybp), 95% HPD range = 1.2 Mya to 200,000 ybp; and autosomal âaâi = 782,490 ybp), between the two subspecies, characteristic of deeply divergedlineages. The populations were wellâdifferentiated in Argentina but moderately differentiated in Peru, with low unidirectional gene flow in each country.Main conclusions: We suggest that the South American Arid Diagonal was preexisting and remains a current phylogeographic barrier between the ranges of the two torrent duck subspecies, and the adult territoriality and breeding site fidelity to the rivers define their population structure.Fil: Alza, Luis. University of Alaska; Estados Unidos. University of Miami. Department of Biology; Estados Unidos. DivisiĂłn de OrnitologĂa. Centro de OrnitologĂa y Diversidad; PerĂșFil: Lavretsky, Philip. University of Texas at El Paso; Estados UnidosFil: Peters, Jeffrey L.. Wright State University; Estados UnidosFil: CerĂłn, Gerardo. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Departamento de ZoologĂa. Laboratorio de ParasitologĂa; ArgentinaFil: Smith, Matthew. University of Alaska; Estados UnidosFil: Kopuchian, Cecilia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Nordeste. Centro de EcologĂa Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de EcologĂa Aplicada del Litoral; Argentina. Museo Argentino de Ciencias Naturales, DivisiĂłn OrnitologĂa,; ArgentinaFil: AstiĂ©, Andrea Alejandra. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Ăridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Ăridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Ăridas; ArgentinaFil: McCracken, Kevin G.. DivisiĂłn de OrnitologĂa. Centro de OrnitologĂa y Diversidad; PerĂș. University of Miami. Department of Biology; Estados Unidos. University of Miami; Estados Unidos. University of Alaska; Estados Unido
Evaluation of groundnut genotypes for heat tolerance
To determine appropriate heat-hardening treatments, 1-month-old plants of groundnuts cv. ICGV 86707 and Chico were conditioned at 30°C (non-hardening temperature) for 1-4 days, followed by 1 or 3 days at 37°C (hardening temperature) and 0 or 1 day at 30°C. Heat injury was assessed through measurements of electrolyte leakage after stressing leaf discs to 55°C for 15 min. Heat injury was lowest in treatments without a return to 30°C, and was lower in ICGV 86707 than Chico. Assessment of heat tolerance of heat-stressed leaf discs of hardened and non-hardened plants of these 2 cultivars and ICGV 86635, ICGV 87358, TMV 2 and JL 24 by measurement of electrolyte leakage and chlorophyll fluorescence showed a close correlation between the 2 methods, suggesting that chlorophyll fluorescence may provide an alternative means of screening for heat toleranc
Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)
Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites â one within the Sacramento urban area and another about 40 km to the northeast in the foothills area â were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.United States. Dept. of Energy. Atmospheric System Research Program (Contract DE-AC06-76RLO 1830)United States. National Oceanic and Atmospheric AdministrationUnited States. National Aeronautics and Space Administration. HQ Science Mission Directorate Radiation Sciences ProgramUnited States. National Aeronautics and Space Administration. CALIPSO ProgramUnited States. Dept. of Energy. Atmospheric Radiation Measurement Program (Interagency Agreement No. DE-AI02-05ER63985
Effectiveness of physiotherapy exercise following total knee replacement: Systematic review and meta-analysis
© 2015 Artz et al. Background: Rehabilitation, with an emphasis on physiotherapy and exercise, is widely promoted after total knee replacement. However, provision of services varies in content and duration. The aim of this study is to update the review of Minns Lowe and colleagues 2007 using systematic review and meta-analysis to evaluate the effectiveness of post-discharge physiotherapy exercise in patients with primary total knee replacement. Methods: We searched MEDLINE, Embase, PsycInfo, CINAHL and Cochrane CENTRAL to October 4th 2013 for randomised evaluations of physiotherapy exercise in adults with recent primary knee replacement. Outcomes were: patient-reported pain and function, knee range of motion, and functional performance. Authors were contacted for missing data and outcomes. Risk of bias and heterogeneity were assessed. Data was combined using random effects meta-analysis and reported as standardised mean differences (SMD) or mean differences (MD). Results: Searches identified 18 randomised trials including 1,739 patients with total knee replacement. Interventions compared: physiotherapy exercise and no provision; home and outpatient provision; pool and gym-based provision; walking skills and more general physiotherapy; and general physiotherapy exercise with and without additional balance exercises or ergometer cycling. Compared with controls receiving minimal physiotherapy, patients receiving physiotherapy exercise had improved physical function at 3-4 months, SMD -0.37 (95% CI -0.62, -0.12), and pain, SMD -0.45 (95% CI -0.85, -0.06). Benefit up to 6 months was apparent when considering only higher quality studies. There were no differences for outpatient physiotherapy exercise compared with home-based provision in physical function or pain outcomes. There was a short-term benefit favouring home-based physiotherapy exercise for range of motion flexion. There were no differences in outcomes when the comparator was hydrotherapy, or when additional balancing or cycling components were included. In one study, a walking skills intervention was associated with a long-term improvement in walking performance. However, for all these evaluations studies were under-powered individually and in combination. Conclusion: After recent primary total knee replacement, interventions including physiotherapy and exercise show short-term improvements in physical function. However this conclusion is based on meta-analysis of a few small studies and no long-term benefits of physiotherapy exercise interventions were identified. Future research should target improvements to long-term function, pain and performance outcomes in appropriately powered trials
- âŠ