135 research outputs found
Misaligned spin and orbital axes cause the anomalous precession of DI Herculis
The orbits of binary stars precess as a result of general relativistic
effects, forces arising from the asphericity of the stars, and forces from
additional stars or planets in the system. For most binaries, the theoretical
and observed precession rates are in agreement. One system, however -- DI
Herculis -- has resisted explanation for 30 years. The observed precession rate
is a factor of four slower than the theoretical rate, a disagreement that once
was interpreted as evidence for a failure of general relativity. Among the
contemporary explanations are the existence of a circumbinary planet and a
large tilt of the stellar spin axes with respect to the orbit. Here we report
that both stars of DI Herculis rotate with their spin axes nearly perpendicular
to the orbital axis (contrary to the usual assumption for close binary stars).
The rotationally induced stellar oblateness causes precession in the direction
opposite to that of relativistic precession, thereby reconciling the
theoretical and observed rates.Comment: Nature, in press [11 pg
Understanding a constellation of eight COVID-19 disease prevention behaviours using the COM-B model and the theoretical domains framework: a qualitative study using the behaviour change wheel
Background: The use of behavioural science and behaviour change within local authorities and public health has supported healthful change; as evidenced by its importance and contribution to reducing harm during the COVID-19 pandemic. It can provide valuable information to enable the creation of evidence-based intervention strategies, co-created with the people they are aimed at, in an effective and efficient manner.
Aim: This study aimed to use the COM-B model to understand the Capability, Opportunity and Motivation of performing a constellation of eight COVID-19 disease prevention behaviours related to the slogans of ‘Hands, Face, Space, Fresh Air’; ‘Find, Isolate, Test, (FIT), and Vaccinate’ in those employed in workplaces identified as high risk for transmission of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) to support intervention development.
Methods: This qualitative study recruited twenty-three participants (16 female, 7 male), who were interviewed from three environments (schools, care homes, warehouses) across three local authorities. Semi-structured interviews were analysed using thematic analysis.
Findings: Ten core themes were identified inductively; (1) knowledge and skills, (2) regulating the behaviour, (3) willingness to act, (4) necessity and concerns, (5) emotional impact, (6) conducive environment, (7) societal influence, (8) no longer united against COVID-19, (9) credible leadership, and (10) inconsistent adherence to COVID-19 prevention behaviours. Themes were then deductively mapped to the COM-B model of behaviour change and the theoretical domains framework and a logic model using the behaviour change wheel (BCW) was produced to inform intervention design.
Conclusion: This study offers a novel approach to analysis that has included eight behaviours within a single thematic analysis and COM-B diagnosis. This will enable local authorities to direct limited resources to overarching priorities. Of key importance, was the need for supportive and credible leadership, alongside developing interventions collaboratively with the target audience. COVID-19 has had an emotional toll on those interviewed, however, promoting the value of disease prevention behaviours, over and above their costs, can facilitate behaviour. Developing knowledge and skills, through education, training, marketing and modelling can further facilitate behaviour. This supports guidance produced by the British Psychological Society COVID-19 behavioural science and disease prevention taskforce
Non-thermal emission processes in massive binaries
In this paper, I present a general discussion of several astrophysical
processes likely to play a role in the production of non-thermal emission in
massive stars, with emphasis on massive binaries. Even though the discussion
will start in the radio domain where the non-thermal emission was first
detected, the census of physical processes involved in the non-thermal emission
from massive stars shows that many spectral domains are concerned, from the
radio to the very high energies.
First, the theoretical aspects of the non-thermal emission from early-type
stars will be addressed. The main topics that will be discussed are
respectively the physics of individual stellar winds and their interaction in
binary systems, the acceleration of relativistic electrons, the magnetic field
of massive stars, and finally the non-thermal emission processes relevant to
the case of massive stars. Second, this general qualitative discussion will be
followed by a more quantitative one, devoted to the most probable scenario
where non-thermal radio emitters are massive binaries. I will show how several
stellar, wind and orbital parameters can be combined in order to make some
semi-quantitative predictions on the high-energy counterpart to the non-thermal
emission detected in the radio domain.
These theoretical considerations will be followed by a census of results
obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy
and Astrophysics Review. Astronomy and Astrophysics Review, in pres
PET Imaging of Soluble Yttrium-86-Labeled Carbon Nanotubes in Mice
The potential medical applications of nanomaterials are shaping the landscape of the nanobiotechnology field and driving it forward. A key factor in determining the suitability of these nanomaterials must be how they interface with biological systems. Single walled carbon nanotubes (CNT) are being investigated as platforms for the delivery of biological, radiological, and chemical payloads to target tissues. CNT are mechanically robust graphene cylinders comprised of sp(2)-bonded carbon atoms and possessing highly regular structures with defined periodicity. CNT exhibit unique mechanochemical properties that can be exploited for the development of novel drug delivery platforms. In order to evaluate the potential usefulness of this CNT scaffold, we undertook an imaging study to determine the tissue biodistribution and pharmacokinetics of prototypical DOTA-functionalized CNT labeled with yttrium-86 and indium-111 ((86)Y-CNT and (111)In-CNT, respectively) in a mouse model.The (86)Y-CNT construct was synthesized from amine-functionalized, water-soluble CNT by covalently attaching multiple copies of DOTA chelates and then radiolabeling with the positron-emitting metal-ion, yttrium-86. A gamma-emitting (111)In-CNT construct was similarly prepared and purified. The constructs were characterized spectroscopically, microscopically, and chromatographically. The whole-body distribution and clearance of yttrium-86 was characterized at 3 and 24 hours post-injection using positron emission tomography (PET). The yttrium-86 cleared the blood within 3 hours and distributed predominantly to the kidneys, liver, spleen and bone. Although the activity that accumulated in the kidney cleared with time, the whole-body clearance was slow. Differential uptake in these target tissues was observed following intravenous or intraperitoneal injection.The whole-body PET images indicated that the major sites of accumulation of activity resulting from the administration of (86)Y-CNT were the kidney, liver, spleen, and to a much less extent the bone. Blood clearance was rapid and could be beneficial in the use of short-lived radionuclides in diagnostic applications
Status of Intraductal Therapy for Ductal Carcinoma in Situ
The intraductal approach is particularly appealing in the setting of ductal carcinoma in situ (DCIS), a preinvasive breast neoplasm that is thought to be entirely intraductal in its extent. Based on an emerging understanding of the anatomy of the ductal system as well as novel techniques to leverage the access accorded by the intraductal approach, researchers are actively exploring how ductal lavage, ductoscopy, and intraductal infusion of therapeutic agents may enhance breast cancer treatment. Both cytologic and molecular diagnostics continue to improve, and work is ongoing to identify the most effective diagnostic biomarkers for DCIS and cancer, although optimal targeting of the diseased duct remains an important consideration. Ductoscopy holds potential in detection of occult intraductal lesions, and ductoscopically guided lumpectomy could increase the likelihood of a more comprehensive surgical excision. Exciting pilot studies are in progress to determine the safety and feasibility of intraductal chemotherapy infusion. These studies are an important starting point for future investigations of intraductal ablative therapy for DCIS, because as our knowledge and techniques evolve, it is likely that DCIS may be the target most amenable to treatment by intraductal therapy. If such studies are successful, these approaches will allow an important and meaningful transformation in treatment options for women diagnosed with DCIS
Modeling of miRNA and Drug Action in the EGFR Signaling Pathway
MicroRNAs have gained significant interest due to their widespread occurrence and diverse functions as regulatory molecules, which are essential for cell division, growth, development and apoptosis in eukaryotes. The epidermal growth factor receptor (EGFR) signaling pathway is one of the best investigated cellular signaling pathways regulating important cellular processes and its deregulation is associated with severe diseases, such as cancer. In this study, we introduce a systems biological model of the EGFR signaling pathway integrating validated miRNA-target information according to diverse studies, in order to demonstrate essential roles of miRNA within this pathway. The model consists of 1241 reactions and contains 241 miRNAs. We analyze the impact of 100 specific miRNA inhibitors (anit-miRNAs) on this pathway and propose that the embedded miRNA-network can help to identify new drug targets of the EGFR signaling pathway and thereby support the development of new therapeutic strategies against cancer
Dark Matter in the Milky Way's Dwarf Spheroidal Satellites
The Milky Way's dwarf spheroidal satellites include the nearest, smallest and
least luminous galaxies known. They also exhibit the largest discrepancies
between dynamical and luminous masses. This article reviews the development of
empirical constraints on the structure and kinematics of dSph stellar
populations and discusses how this phenomenology translates into constraints on
the amount and distribution of dark matter within dSphs. Some implications for
cosmology and the particle nature of dark matter are discussed, and some
topics/questions for future study are identified.Comment: A version with full-resolution figures is available at
http://www.cfa.harvard.edu/~mwalker/mwdsph_review.pdf; 70 pages, 22 figures;
invited review article to be published in Vol. 5 of the book "Planets, Stars,
and Stellar Systems", published by Springe
- …