10 research outputs found

    Weak Lensing from Space I: Instrumentation and Survey Strategy

    Full text link
    A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ``wide'' 300 square degree survey and a ``deep'' 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.Comment: 25 pages, 8 figures, 1 table, replaced with Published Versio

    Weighing dark matter haloes with gravitationally lensed supernovae

    No full text
    High-redshift Type Ia supernovae (SNe Ia) are likely to be gravitationally lensed by dark matter haloes of galaxies in the foreground. Since SNe Ia have very small dispersion after light-curve shape and colour corrections, their brightness can be used to measure properties of the dark matter haloes via gravitational magnification. We use observations of galaxies and SNe Ia within the Great Observatories Origins Deep Survey (GOODS) to measure the relation between galaxy luminosity and dark matter halo mass. The relation we investigate is a scaling law between velocity dispersion and galaxy luminosity in the B band: σ = σ*(L/L*)η, where L* = 1010 h-2 L⊙. The best-fitting values to this relation are σ* = 136 km s-1 and η = 0.27. We find σ*≲ 190 km s-1 at the 95 per cent confidence level. This method provides an independent cross-check of measurements of dark matter halo properties from galaxy-galaxy lensing studies. Our results agree with the galaxy-galaxy lensing results, but have much larger uncertainties. The GOODS sample of SNe Ia is relatively small (we include 24 SNe) and the results therefore depend on individual SNe Ia. We have investigated a number of potential systematic effects. Light-curve fitting, which affects the inferred brightness of the SNe Ia, appears to be the most important one. Results obtained using different light-curve fitting procedures differ at the 68.3 per cent confidence level. © 2009 The Authors. ournal compilation © 2009 RAS

    An Integral Field Spectrograph for SNAP Supernova Identification

    No full text
    This paper will be published in SPIE Proceedings Vol. 4850 and is made available as an electronic preprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited - SupernovaeA well-adapted spectrograph concept has been developed for the SNAP (SuperNova/Acceleration Probe) experiment. The goal is to ensure proper identification of Type Ia supernovae and to standardize the magnitude of each candidate by determining explosion parameters. An instrument based on an integral field method with the powerful concept of imager slicing has been designed and is presented in this paper. The spectrograph concept is optimized to have very high efficiency and low spectral resolution (R~100), constant through the wavelength range (0.35-1.7µm), adapted to the scientific goals of the mission
    corecore