139 research outputs found

    The role of the g9/2 orbital in the development of collectivity in the A = 60 region: The case of 61Co

    Get PDF
    An extensive study of the level structure of 61Co has been performed following the complex 26Mg(48Ca, 2a4npg)61Co reaction at beam energies of 275, 290 and 320 MeV using Gammasphere and the Fragment Mass Analyzer (FMA). The low-spin structure is discussed within the framework of shell-model calculations using the GXPF1A effective interaction. Two quasi-rotational bands consisting of stretched-E2 transitions have been established up to spins I = 41/2 and (43/2), and excitation energies of 17 and 20 MeV, respectively. These are interpreted as signature partners built on a neutron {\nu}(g9/2)2 configuration coupled to a proton {\pi}p3/2 state, based on Cranked Shell Model (CSM) calculations and comparisons with observations in neighboring nuclei. In addition, four I = 1 bands were populated to high spin, with the yrast dipole band interpreted as a possible candidate for the shears mechanism, a process seldom observed thus far in this mass region

    Nur77-deficiency in bone marrow-derived macrophages modulates inflammatory responses, extracellular matrix homeostasis, phagocytosis and tolerance

    Get PDF
    The nuclear orphan receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to modulate the inflammatory response of macrophages. To further elucidate the role of Nur77 in macrophage physiology, we compared the transcriptome of bone marrow-derived macrophages (BMM) from wild-type (WT) and Nur77-knockout (KO) mice. In line with previous observations, SDF-1α (CXCL12) was among the most upregulated genes in Nur77-deficient BMM and we demonstrated that Nur77 binds directly to the SDF-1α promoter, resulting in inhibition of SDF-1α expression. The cytokine receptor CX3CR1 was strongly downregulated in Nur77-KO BMM, implying involvement of Nur77 in macrophage tolerance. Ingenuity pathway analyses (IPA) to identify canonical pathways regulation and gene set enrichment analyses (GSEA) revealed a potential role for Nur77 in extracellular matrix homeostasis. Nur77-deficiency increased the collagen content of macrophage extracellular matrix through enhanced expression of several collagen subtypes and diminished matrix metalloproteinase (MMP)-9 activity. IPA upstream regulator analyses discerned the small GTPase Rac1 as a novel regulator of Nur77-mediated gene expression. We identified an inhibitory feedback loop with increased Rac1 activity in Nur77-KO BMM, which may explain the augmented phagocytic activity of these cells. Finally, we predict multiple chronic inflammatory diseases to be influenced by macrophage Nur77 expression. GSEA and IPA associated Nur77 to osteoarthritis, chronic obstructive pulmonary disease, rheumatoid arthritis, psoriasis, and allergic airway inflammatory diseases. Altogether these data identify Nur77 as a modulator of macrophage function and an interesting target to treat chronic inflammatory diseas

    Persistent changes in lipoprotein lipids after a single infusion of ascending doses of MDCO-216 (apoA-IMilano/POPC) in healthy volunteers and stable coronary artery disease patients

    Get PDF
    Background and aims: Effects of single ascending doses of MDCO-216 on plasma lipid and lipoprotein levels were assessed in human healthy volunteers and in patients with stable coronary artery disease (CAD). Methods: MDCO-216 was infused at a single dose of 5, 10, 20, 30 or 40 mg/kg over 2 h and blood was collected at 2, 4, 8, 24, 48, 168 and 720 h after start of infusion (ASOI). Lipoprotein lipids were assessed by FLPC and by 1H NMR. Results: Plasma concentrations of free cholesterol (FC) displayed a rapid and dose-dependent rise, peaking at 8 h, but remaining above baseline until 48 h ASOI, whereas levels of esterified cholesterol (CE) increased at lower doses but not at higher doses, and even decreased below baseline at the highest dose. Plasma cholesterol esterification rate (CER) decreased with a first nadir between 4 and 8 h and a second nadir at 48 h ASOI. Taken over all subjects receiving MDCO-216, the increase in FC at 8 h correlated inversely with the drop in CER at 4 h but positively with the increase in basal and scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux capacities at 2 h ASOI. Upon FPLC analysis, FC was found to increase first in high density lipoproteins (HDL) and very low density lipoproteins (VLDL) and later (at 48 or 168 h ASOI) in low density lipoproteins (LDL). CE initially decreased in LDL and HDL but after 24 h started to increase in VLDL and LDL whereas HDL-CE was still below baseline at 48 h. Phospholipids (PL) showed the same pattern as FC. Triglycerides (TG) also rose rapidly, most prominently in VLDL, but also in LDL and HDL. Apolipoprotein E (Apo-E) in VLDL increased at 4-8 h but returned to baseline at 24 h ASOI. 1H NMR analysis showed a rapid and dose-dependent increase in HDL particle size, peaking at 2 h and returning to baseline at 24 h, and a small increase in HDL particle concentration. After infusion of the 40 mg/kg dose, LDL and VLDL-particles also increased in number and size. Conclusions: A single administration of MDCO-216 caused rapid changes in lipid levels and lipoprotein composition, some of which persisted for at least 7 days

    Mutation analysis of the Fanconi anaemia A gene in breast tumours with loss of heterozygosity at 16q24.3

    Get PDF
    The recently identified Fanconi anaemia A (FAA) gene is located on chromosomal band 16q24.3 within a region that has been frequently reported to show loss of heterozygosity (LOH) in breast cancer. FAA mutation analysis of 19 breast tumours with specific LOH at 16q24.3 was performed. Single-stranded conformational polymorphism (SSCP) analysis on cDNA and genomic DNA, and Southern blotting failed to identify any tumour-specific mutations. Five polymorphisms were identified, but frequencies of occurrence did not deviate from those in a normal control population. Therefore, the FAA gene is not the gene targeted by LOH at 16q24.3 in breast cancer. Another tumour suppressor gene in this chromosomal region remains to be identified. © 1999 Cancer Research Campaig

    Neuropsychological intervention in kindergarten children with subtyped risks of reading retardation

    Get PDF
    Kindergarten children at risk of developing language problems were administered the Florida Kindergarten Screening Battery. A principal components analysis revealed a verbal and a visual-spatial component and subsequent discriminant function analyses a high verbal/low visual-spatial group (LAL: Latent L) and a high visual-spatial/low verbal group (LAP: Latent P). LAL- and LAP-children were considered at risk for developing an L- or P-type of dyslexia, respectively. As is common practice with children suffering from manifest L- or Pdyslexia, the LAL- and LAP-kindergartners received right and left hemisphere stimulation, respectively. The outcomes were compared with those of bilateral hemispheric stimulation and no intervention. Reading tests were administered in primary school Grades 1 and 5/6; teachers' evaluation of reading took place in Grade 5/6. Overall, the LAL- and LAP- groups showed significant backwardness in word and text reading, both at early and late primary school. Types of intervention made a difference though: not significantly backward in early word, late word, and late text reading were the LAL-children who had received right hemisphere stimulation. Nonintervened LAP-children did not show significant backwardness in early word reading and late text reading, nor did LAP-children who had received left hemisphere or bilateral stimulation. Early text reading was not affected by any treatment. Teacher's evaluations were in support of these findings. Copyright © 2005 by The International Dyslexia Association®

    Mode imaging and selection in strongly coupled nanoantennas

    Full text link
    The number of eigenmodes in plasmonic nanostructures increases with complexity due to mode hybridization, raising the need for efficient mode characterization and selection. Here we experimentally demonstrate direct imaging and selective excitation of the bonding and antibonding plasmon mode in symmetric dipole nanoantennas using confocal two-photon photoluminescence mapping. Excitation of a high-quality-factor antibonding resonance manifests itself as a two-lobed pattern instead of the single spot observed for the broad bonding resonance, in accordance with numerical simulations. The two-lobed pattern is observed due to the fact that excitation of the antibonding mode is forbidden for symmetric excitation at the feedgap, while concomitantly the mode energy splitting is large enough to suppress excitation of the bonding mode. The controlled excitation of modes in strongly coupled plasmonic nanostructures is mandatory for efficient sensors, in coherent control as well as for implementing well-defined functionalities in complex plasmonic devices.Comment: 11 pages, 5 figures, 1 supplementary informatio

    Persistence on therapy and propensity matched outcome comparison of two subcutaneous interferon beta 1a dosages for multiple sclerosis

    Get PDF
    To compare treatment persistence between two dosages of interferon β-1a in a large observational multiple sclerosis registry and assess disease outcomes of first line MS treatment at these dosages using propensity scoring to adjust for baseline imbalance in disease characteristics. Treatment discontinuations were evaluated in all patients within the MSBase registry who commenced interferon β-1a SC thrice weekly (n = 4678). Furthermore, we assessed 2-year clinical outcomes in 1220 patients treated with interferon β-1a in either dosage (22 µg or 44 µg) as their first disease modifying agent, matched on propensity score calculated from pre-treatment demographic and clinical variables. A subgroup analysis was performed on 456 matched patients who also had baseline MRI variables recorded. Overall, 4054 treatment discontinuations were recorded in 3059 patients. The patients receiving the lower interferon dosage were more likely to discontinue treatment than those with the higher dosage (25% vs. 20% annual probability of discontinuation, respectively). This was seen in discontinuations with reasons recorded as “lack of efficacy” (3.3% vs. 1.7%), “scheduled stop” (2.2% vs. 1.3%) or without the reason recorded (16.7% vs. 13.3% annual discontinuation rate, 22 µg vs. 44 µg dosage, respectively). Propensity score was determined by treating centre and disability (score without MRI parameters) or centre, sex and number of contrast-enhancing lesions (score including MRI parameters). No differences in clinical outcomes at two years (relapse rate, time relapse-free and disability) were observed between the matched patients treated with either of the interferon dosages. Treatment discontinuations were more common in interferon β-1a 22 µg SC thrice weekly. However, 2-year clinical outcomes did not differ between patients receiving the different dosages, thus replicating in a registry dataset derived from “real-world” database the results of the pivotal randomised trial. Propensity score matching effectively minimised baseline covariate imbalance between two directly compared sub-populations from a large observational registry

    Elevated Expression of Phospholipid Transfer Protein in Bone Marrow Derived Cells Causes Atherosclerosis

    Get PDF
    Background: Phospholipid transfer protein (PLTP) is expressed by various cell types. In plasma, it is associated with high density lipoproteins (HDL). Elevated levels of PLTP in transgenic mice result in decreased HDL and increased atherosclerosis. PLTP is present in human atherosclerosis lesions, where it seems to be macrophage derived. The aim of the present study is to evaluate the atherogenic potential of macrophage derived PLTP. Methods and Findings: Here we show that macrophages from human PLTP transgenic mice secrete active PLTP. Subsequently, we performed bone marrow transplantations using either wild type mice (PLTPwt/wt), hemizygous PLTP transgenic mice (huPLTPtg/wt) or homozygous PLTP transgenic mice (huPLTPtg/tg) as donors and low density lipoprotein receptor deficient mice (LDLR-/-) as acceptors, in order to establish the role of PLTP expressed by bone marrow derived cells in diet-induced atherogenesis. Atherosclerosis was increased in the huPLTPtg/wt → LDLR-/ - mice (2.3-fold) and even further in the huPLTPtg/tg→LDLR-/ - mice (4.5-fold) compared with the control PLTPwt/wt→LDLR-/- mice (both P<0.001). Plasma PLTP activity levels and non-HDL cholesterol were increased and HDL cholesterol decreased compared with controls (all P<0.01). PLTP was present in atherosclerotic plaques in the mice as demonstrated by immunohistochemistry and appears to co-localize with macrophages. Isolated macrophages from PLTP transgenic mice do not show differences in cholesterol efflux or in cytokine production. Lipopolysaccharide activation of macrophages results in increased production of PLTP. This effect was strongly amplified in PLTP transgenic macrophages. Conclusions: We conclude that PLTP expression by bone marrow derived cells results in atherogenic effects on plasma lipids, increased PLTP activity, high local PLTP protein levels in the atherosclerotic lesions and increased atherosclerotic lesion size
    corecore