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Abstract

Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in
spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART),
macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is
reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in
macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet
unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying
novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages.

Methodology/Principal Findings: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and
viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had
relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A
total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using
linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and
SNP rs12483205 in DYRK1A (p = 2.1661025). While the association was not genome-wide significant (p,161027), we could
replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034).
Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.8461026). In addition,
we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and
p = 0.0048).

Conclusions/Significance: These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in
macrophages as well as in vivo.
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Introduction

The development of highly active antiretroviral therapy

(HAART) has been the biggest achievement in HIV/AIDS

medicine. The current drug regimens can suppress plasma viral

load to (near) undetectable levels. However, often residual levels of

ongoing viremia can be detected [1,2], even after treatment

intensification [3], and complete eradication of HIV-1 from an

infected patient has not been achieved with HAART [4]. HAART

does not affect cells that are latently infected because in these cells
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the virus is not actively replicating. Activation of this viral reservoir

of latently infected resting CD4+ T cells [5] and residual

replication in monocytes/macrophages (reviewed in [6]) is

believed to be responsible for the increase in plasma viral RNA

levels that is observed after discontinuing HAART. Furthermore,

cells residing in the gut associated lymphoid tissue (GALT) [7,8],

the testis [9,10] and the central nervous system (CNS) [11,12] may

keep producing virus despite the use of antiretrovirals, because

drug penetration of these tissues is suboptimal. As a result of this

viral rebound and the existence of these sanctuary sites, HIV-1

infected individuals need to be on anti-HIV-1 medication for life.

The emerging drug resistance [13,14] and the severe side effects

(reviewed by [15]), high costs and suboptimal tissue penetration of

HAART necessitate transition from treatment to cure as soon as

possible.

The viral reservoir is established early after primary HIV-1

infection [16,17]. Although the precise mechanism is unknown, it

has been shown that infected macrophages play a critical role in

rendering resting CD4+ (but CCR52) T cells permissive for HIV-1

infection [18]. Targeting these HIV-1 infected macrophages will

not only help to eradicate the viral reservoir, but will also limit the

spread of HIV-1 to CD4+ T cells [19,20], prevent recruitment and

activation of these cells [21], and reduce macrophage mediated

apoptosis of T cells [22–25]. In addition, inhibiting or reducing

HIV-1 replication in macrophages/microglia will be of impor-

tance in preventing the onset of AIDS dementia and other

neurocognitive disorders associated with HIV-1 infection in the

brain, because macrophages/microglia play a crucial role in the

pathogenesis of these [26–28].

In the battle to cure HIV-1 infected individuals, identification of

novel targets for the development of drugs that can be used to

inhibit HIV-1 replication in macrophages will be required,

especially since macrophages are relatively resistant to the

cytopathic effect of HIV-1 replication [29]. Furthermore, tissue

macrophages residing in the sanctuary sites described above are

exposed to suboptimal levels of antiretrovirals, and the efficacy of

protease inhibitors (PIs) and other late stage inhibitors in

macrophages is substantially reduced [30,31]. This lower efficacy

of PIs in macrophages forms an obstacle in ending the ongoing

residual replication, since only intervention of the virus’ replication

cycle at stages post reverse transcription and integration will

prevent the production of new virions. Once the provirus is

integrated in the host genome, integrase and reverse transcriptase

inhibitors will no longer be effective in the cell.

Since the HIV-1 genome encodes only 15 proteins [32], it is

dependent on numerous host proteins for its replication [33].

Intervention of the interaction between HIV-1 and these HIV-1

dependency factors (HDFs) can potentially be used to inhibit

replication of the virus. Currently, the majority of drugs target

viral enzymes: HIV-1 protease, reverse transcriptase and integrase

(reviewed in [34]). The abundance of the HDFs offers great

promise for finding drugs that may be less prone to emerging drug

resistance of the virus, may better penetrate tissues and reach

sanctuary sites, and may effectively prevent the formation of new

virions in both monocytes/macrophages and CD4+ T cells.

However, it will be crucial to find a balance between limiting

the availability of HDFs and inhibiting viral replication, since most

host proteins essential for HIV-1 replication may also play critical

roles in the host cell.

Recently, a large number of host proteins that might be good

targets for novel drugs to inhibit HIV-1 replication was identified

[35–38]. These candidate proteins were found by measuring a

significant change in HIV-1 replication after a genome-

scale knock-down of host proteins, in different cell-lines. Since

macrophages are important as reservoir and in sanctuary sites, it is

also important to identify HDFs or host antiviral factors in these

cells. Because primary macrophages are notoriously difficult to

transfect and since HIV-1 replication in monocyte-derived

macrophages (MDM) can vary enormously between donors [39–

43] we decided to use a different approach and to actually exploit

this genetic variation between individuals. When monocyte

isolation, cell culture methods, medium and virus are all strictly

controlled, remaining variation in HIV-1 replication observed in

MDM from different donors can be assumed to be primarily of

genetic origin. Finding an association between host genetic traits

like a single nucleotide polymorphism (SNP) and HIV-1

replication in MDM would suggest that the locus tagged by this

SNP is of importance for replication of HIV-1 in these cells. We

therefore searched genome-wide for associations between SNPs

and in vitro HIV-1 replication specifically in monocyte-derived

macrophages.

Results

Association between single nucleotide polymorphism in
the kinase DYRK1A and HIV-1 replication in monocyte-
derived macrophages

A total of 494,656 SNPs passing quality control were tested for

association with levels of HIV-1 replication in monocyte-derived

macrophages (MDM) using linear regression. With data from 191

healthy blood donors whose MDM ranked in the bottom quartile

with lowest (n = 95 donors) or top quartile with highest (n = 96

donors) Gag p24 production 14 days post infection with HIV-1 [39]

(Table 1), we found strongest associations for SNPs in the genes

PDE8A (rs2304418, p = 2.461026 and rs12909130, p = 8.361026),

UBR7 (rs2905, p = 7.061026), MOAP1 (rs1046099, p = 9.961026

and rs1270629, p = 1.0961025), DYRK1A (rs12483205, p =

2.261025) and SPOCK3 (rs17519417, p = 2.561025) (Figure 1,
Table S1). The two SNPs in PDE8A were found to be in high

linkage disequilibrium (LD; r2 = 0.97), whereas only a moderate

degree of LD was found between rs1046099 and rs1270629 in

MOAP1 (r2 = 0.54) (Table 2). Table 2 shows all other SNPs

associated with HIV-1 replication in MDM (cutoff p val-

ue = 561025; n = 16), and includes information about LD, location,

number of donors homozygous for the minor allele (MIN) and

empirical p values after permutation testing. Genotyping results for

none of these 16 SNPs violated Hardy-Weinberg equilibrium.

The empirical p values for linear regression using 107

permutations of the genotype for each SNP in Table 2 were in

close agreement with the asymptotic p values (Table 2). However,

none of these SNPs remained statistically significant after a

conservative correction for multiple testing (Bonferroni threshold

of p,161027; Figure S1). We next investigated the association

between the SNPs in the five most promising genes (rs2304418 in

PDE8A, rs2905 in UBR7, rs1046099 and rs1270629 in MOAP1,

rs12483205 in DYRK1A and rs17519417 in SPOCK3) in a second

group of blood donors (replication cohort). MDM from an

independent group of 32 healthy blood donors were infected with

HIV-1 and Gag p24 levels were measured 14 days after infection.

One donor was found to be homozygous for the 32 base pair

deletion in CCR5, rendering the cells completely resistant to

infection with CCR5-using HIV-1, and results obtained with

macrophages from this donor were excluded from further analysis.

The associations for the SNPs in PDE8A, UBR7, MOAP1 and

SPOCK3 with Gag p24 production by MDM could not be

replicated in this small group of 31 donors (data not shown).

However, in this replication cohort we again found a strong

association between SNP rs12483205 in DYRK1A and in vitro HIV-

SNP in DYRK1A Affects HIV-1 Replication in MDM
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Figure 1. Association between HIV-1 replication in monocyte-derived macrophages (MDM) and the genotypes for the SNPs
rs12483205 in DYRK1A, rs2304418 in PDE8A, rs2905 in UBR7, rs1046099 and rs1270629 in MOAP1, and rs17519417 in SPOCK3. Only
donors with MDM with low (n = 95) or high (n = 96) HIV-1 replication in vitro were included in the genome-wide SNP analysis. This selection of donors
with a more extreme phenotype explains the absence of circles in the middle section of the graphs. MAJ, homozygous for the major allele; HZ,
heterozygote; MIN, homozygous for the minor allele.
doi:10.1371/journal.pone.0017190.g001

Table 1. Characteristics of healthy donors whose macrophages showed either low, intermediate, or high HIV-1 replication in vitro.

In vitro HIV-1 replication in monocyte-derived macrophages

Low Intermediate High p valuea

Donors (number) 95 202 96 n/a

Gender (males:females) 52:43 unknownb 53:43 0.948c

Age (years, mean 6 SD) 46611 49611 47612 0.371d

European ancestry (number, %) 95e, 100% 202f 96e, 100% n/a

Normalized p24, log10 (mean 6 SD) 20.6560.34 20.0160.16 0.4960.18 ,0.0001d

n/a, not applicable.
SD, standard deviation.
ap values only for comparison between donors with MDM that produced low levels of Gag p24 and donors with MDM that had high p24 production after infection with
HIV-1.

bInformation was not available.
cPearson chi-square test.
dTwo-sample t-test.
eSelf-reported, Structure and Eigenstrat analysis (for details see Materials and Methods section).
fSelf-reported only (for details see Materials and Methods section).
doi:10.1371/journal.pone.0017190.t001
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1 replication in macrophages (p = 0.0034) (Figure 2, Table S2),

also after correction for cell number and normalization

(p = 0.0081; n = 28, information on cell number was missing for

3 donors) (data not shown, Table S2). This association remained

significant after correction for multiple testing (Bonferroni

corrected p = 0.020 (0.003466 SNPs for which we tried to

replicate the association)) and when calculating the empirical p

value for linear regression using 105 permutations of the genotypes

(p = 0.004) (Table S1).

The DYRK1A SNP rs12483205 genotypes were then also

determined for the 202 donors with MDM that had intermediate

Gag p24 levels in the supernatant [39]. Adding results from this

group of donors did not change the strength of the association

between the rs12483205 genotype and HIV-1 replication in

MDM (p = 2.0961025; n = 393) (Figure S2A, Table S3). As

expected, combined analysis of both the initial group of donors

(n = 393) and the replication cohort (n = 28) revealed an increase

in the strength of the association for rs12483205 in DYRK1A

(p = 4.8461026) (Figure S2B, Table S4).

Effect of rs12483205 in DYRK1A is independent of the
CCR5 D32 genotype

The 32 base pair deletion in CCR5 strongly affects replication of

HIV-1, also in macrophages in vitro [39]. MDM from donors that

were heterozygous for this 32 base pair deletion (n = 33) had

significantly lower HIV-1 replication than donors without the

deletion (n = 158) (p = 0.0036, two-sample t-test) (Table S5).

There were significantly more CCR5 wt/D32 heterozygous donors

present in the rs12483205 heterozygous (HZ) and rs12483205

MIN groups (p = 0.02, Fisher Exact test). After adjusting for the

CCR5 wt/D32 heterozygous genotype by using it as a covariate in

multivariate analysis, the strength of the association between the

Table 2. SNPs (p,561025) associated with in vitro HIV-1 replication in monocyte-derived macrophages.

SNP
Closest
gene Location Chr. Position p value Empirical p*2

# MIN
donors Linkage disequilibrium (r2)*3

1 rs2304418 PDE8A Intronic 15 85640983 2.4161026 2.3061026 15 0.97m

2 rs2905 UBR7 39 UTR 14 93693422 6.9661026 8.0061026 16 0.35c 0.28&

3 rs12909130 PDE8A Intronic 15 85590501 8.3161026 8.7061026 15 0.97m

4 rs1046099 MOAP1 39 UTR 14 93649501 9.9461026 1.1261025 17 0.28& 0.54N

5 rs1270629 MOAP1 Flanking 39 UTR 14 93646409 1.0961025 1.1561025 6 0.35c 0.54N

6 rs2828074 Intergenic 21 24710202 1.4161025 1.4561025 - *4

7 rs12483205*1 DYRK1A Intronic 21 38740824 2.1661025 2.2661025 8

8 rs17519417 SPOCK3 Intronic 4 167659185 2.5261025 2.4161025 - *4

9 rs16884060 Intergenic 5 10060297 3.2061025 3.1261025 4

10 rs7856177 SPTLC1 Intronic 9 94839342 3.4261025 3.6461025 1 0.26.

11 rs8070997 ACCN1 Intronic 17 31428130 3.6661025 3.3861025 2

12 rs1792745 LOC642484 Intronic 18 53804993 3.8661025 4.4561025 8

13 rs7042102 SPTLC1 Flanking 39 UTR 9 94763790 4.0161025 4.2561025 28 1.00b 0.26.

14 rs10739923 SPTLC1 Flanking 39 UTR 9 94746291 4.0161025 4.2361025 28 1.00b

15 rs12361072 Intergenic 11 23086211 4.9361025 5.4661025 34 1.00X

16 rs2468574 Intergenic 11 23096397 4.9361025 5.4661025 34 1.00X

Chr., chromosome.
*1The effect of the SNP in DYRK1A was replicated with monocyte-derived macrophages from an independent group of 31 donors.
*2Empirical p value calculated for linear regression using 107 permutations of the genotypes.
*3Measure for the magnitude of linkage disequilibrium (r2) between SNPs with identical symbols (m, b, c, ., &, N or X).
*4Major genotype is the heterozygous genotype (,50%); both classes of homozygous genotypes equally present (,25% each).
doi:10.1371/journal.pone.0017190.t002

Figure 2. Significant association between rs12483205 and in
vitro replication of HIV-1 in macrophages derived from an
independent group of 31 healthy blood donors. The negative
association between the rs12483205 minor allele and Gag p24 levels in
MDM culture supernatant 14 days after inoculation with HIV-1, was
found to match with the results from the genome-wide association
study. Open circles represent results from donors with the CCR5 D32
wild-type genotype, filled circles from donors with the CCR5 wt/D32
heterozygous genotype. MAJ, homozygous for the major allele; HZ,
heterozygote; MIN, homozygous for the minor allele.
doi:10.1371/journal.pone.0017190.g002

N
N
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DYRK1A rs12483205 genotype and HIV-1 replication in MDM

decreased (from p = 2.261025 to p = 1.261024), but persisted

(Table S5). Moreover, the association of rs12483205 in DYRK1A

with HIV-1 replication in MDM in the replication cohort of 31

donors, was independent of the CCR5 D32 genotype (p = 0.0022,

and p = 0.007 when corrected for cell number and normalized for

date of isolation; Table S2), suggesting only a spurious

relationship between the CCR5 locus on chromosome 3 and

SNP rs12483205 in DYRK1A located on chromosome 21. Indeed,

this was supported by results from the multivariate analysis on the

total group of 393 donors (p = 3.861025, Table S3) and on the

combined group of 421 (393+28 donors from the replication

cohort) individuals (p = 9.761026, Table S4).

Minor variant of SNP rs12483205 in DYRK1A is associated
with slower disease progression

Next, we investigated the association between HIV-1 load or

disease course in vivo and the six most promising SNPs identified in

our GWAS (rs12483205 in DYRK1A, rs2304418 in PDE8A, rs2905

in UBR7, rs1046099 and rs1270629 in MOAP1 and rs17519417 in

SPOCK3). Results from the Amsterdam Cohort Study (ACS)

GWAS on HIV/AIDS disease progression (Van Manen et al.,

manuscript in preparation) and three previously published HIV-1

cohort studies with GWAS data were used: the CHAVI cohort

[44], the GRIV [45,46] and the MACS [47]. To avoid possible

overlap between the replication cohorts, MACS samples were

removed from the CHAVI cohort and the analysis was performed

only using data from the European subset (EURO-CHAVI).

Illumina Human Hap BeadChips were used for genotyping

DNA samples in the EURO-CHAVI cohort (550 K/1 M), the

GRIV (300 K) and the ACS (300 K), whereas in the MACS they

used Affymetrix Human 500 K GeneChips for the first stage

discovery analysis [47]. Using different genotyping platforms

results in genotype data for a different set of SNPs, which

occasionally makes it necessary to estimate the unobserved

genotypes, a process called SNP imputation [48]. When the

imputation score (a measure for the reliability of the imputation)

was below 0.8, imputation was considered unreliable and data was

therefore not used. Results for SNPs rs2905 (UBR7), rs1046099

(MOAP1), rs1270629 (MOAP1) and rs12483205 (DYRK1A) in the

MACS, and rs1046099 (MOAP1) and rs17519417 (SPOCK3) in

both the GRIV and the ACS, were based on SNP imputation. The

imputation score for rs12483205 in DYRK1A was 0.94, and ,0.8

for rs2905, rs1046099 and rs1270629. For rs1046099 and

rs17519417 the imputation scores were 0.88 and 1 respectively,

in the GRIV and in the ACS.

Table 3 shows the results for association testing between

disease progression or viral load and the identified SNPs in

DYRK1, PDE8A, UBR7, MOAP1 and SPOCK3. No significant

associations or trends were found for the SNPs in PDE8A, UBR7 or

MOAP1. However, SNPs rs12483205 in DYRK1A and rs17519417

in SPOCK3 were significantly associated with in vivo endpoints in

at least one of the four independent cohorts analyzed. While no

association was observed in the GRIV and the ACS, we found an

association between rs12483205 in DYRK1A and disease progres-

sion in the MACS (p = 0.0048, Table 3) and in the EURO-

CHAVI cohort (p = 0.035, Table 3). In both cohort studies the

minor allele of rs12483205 was associated with slower disease

progression, which was consistent with the decreased in vitro

replication of HIV-1 in MDM for the minor allele of rs12483205.

Furthermore, there was an association between SNP genotype

and progression to AIDS for rs17519417 in SPOCK3 in the MACS

[47] (p = 0.012, Table 3), with the C allele associated with slower

progression. This was also in agreement with the association with

lower in vitro HIV-1 replication in MDM in our study.

SNP rs12483205 is localized near the 59 untranslated
region of DYRK1A transcript variant 3

The DYRK1A mRNA has multiple splice forms. According to

the NCBI Entrez Gene database [49] the alternative splicing can

yield four different DYRK1A transcript variants, referred to as

transcripts 1, 2, 3 and 5 (Figure 3). In addition to differences in

the number or size of exons, there is also variation in the length of

both the 59 and 39 untranslated region (UTR). Transcript variant

1 encodes the longest isoform (763 amino acids), which is a

fraction larger than isoform 2 (754 amino acids). Isoforms 3 and 5

lack a C-terminal part of the full length protein (179 and 234

amino acids respectively), and consequently miss among others a

poly-His domain. SNP rs12483205 in DYRK1A lies ,900 base

pairs downstream of the most distant 59 UTR fragment of

Table 3. Results (p values) for association testing using the additive analysis model, between disease progression or viral load and
the SNPs in DYRK1A, PDE8A, UBR7, MOAP1 and SPOCK3.

EURO-CHAVI GRIV MACS ACS

SNP (gene)
viral load
at set point

progression
(CD4 T cells)

non-
progressors -
controls

rapid
progressors -
controls

rapid –
moderate -
non-progressors

AIDS
(def. ’87)

AIDS
(def. ’93)

AIDS
related
death

rs12483205 (DYRK1A) .0.1 0.035* .0.1 .0.1 0.0048*# 0.059*# 0.059 .0.1

rs2304418 (PDE8A) .0.1 .0.1 .0.1 .0.1 .0.1 .0.1 .0.1 .0.1

rs2905 (UBR7) .0.1 .0.1 .0.1 .0.1 N.A. N.A. .0.1 .0.1

rs1046099 (MOAP1) .0.1 .0.1 .0.1 .0.1 N.A. N.A. 0.075# .0.1

rs1270629 (MOAP1) .0.1 .0.1 .0.1 .0.1 N.A. N.A. .0.1 .0.1

rs17519417 (SPOCK3) .0.1 .0.1 .0.1 .0.1 0.012*# 0.086*# .0.1 .0.1

All p values ,0.1 are shown.
*Effect of the minor allele consistent with our findings.
#Based on SNP imputation; imputation score .0.8.
N.A., not available (imputation score ,0.8); EURO-CHAVI, European subset of the CHAVI cohort (n = 1,280 for viral load and n = 634 for disease progression) [44]; GRIV,
Genomics of Resistance to Immunodeficiency Virus cohort (275 non-progressors vs. 1,352 controls [45], and 85 rapid progressors vs. 1,352 controls [46]); MACS,
MultiCenter AIDS Cohort Study cohort (n = 156) [47]; ACS, Amsterdam Cohort Study (n = 404; Van Manen et al., manuscript in preparation).
doi:10.1371/journal.pone.0017190.t003
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transcript variant 3 (Figure 3). PCR analysis with primers able to

discriminate between all four known transcript variants (Figure
S3) confirmed the presence of transcript variants 1, 2 and 3 in

MDM, and in the glioma cell line U87 that was used as a positive

control for the PCR (Figure 4). Transcript variant 5 was present

in U87 cells, but was not detected in MDM (Figure 4). The

DYRK1A gene region is devoid of known SNPs that are in high

LD with rs12483205; currently available data on LD in this region

does not reveal any SNP with an r2.0.5 in the Caucasian

population [50–52].

Discussion

Genome-wide studies provide a hypothesis free and unbiased

approach to identify novel associations between genetic factors

and the studied phenotype. Selecting donors with a more extreme

in vitro phenotype allowed us to identify a number of promising

SNPs in genes not previously linked to HIV-1, that are associated

with replication levels of HIV-1 in monocyte-derived macrophages

(MDM). Importantly, the association between rs12483205 in

DYRK1A and in vitro HIV-1 replication could be replicated using

Figure 3. Schematic representation of the DYRK1A gene region, depicting all four transcript variants (1, 2, 3 and 5) and the
localization of SNP rs12483205. Untranslated regions (UTR) are shown as open blocks, whereas exons are shown as filled blocks. SNP rs12483205
lies in close proximity to a part of the 59 UTR unique for splice variant 3.
doi:10.1371/journal.pone.0017190.g003

Figure 4. Detection of different DYRK1A transcript variants in macrophages. Amplicons were generated by PCR on cDNA from U87 cells,
used as a positive control for the PCR, and from monocyte-derived macrophages (MDM) obtained from three individuals, using DYRK1A transcript
variant specific primers. DYRK1A transcript variants 1, 2 and 3 were detected in MDM and U87 cells (panel A, B and C respectively). Transcript variant 5,
however, was only convincingly detected in U87 cells, and not in MDM. Numbers on the left side of each picture indicate the size (in base pairs, bp)
for the corresponding DNA fragment of the DNA ladder or PCR amplicons. 1 kb, 1 kb DNA ladder; 100 bp, 100 bp DNA ladder.
doi:10.1371/journal.pone.0017190.g004
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MDM from an independent small group of donors, and was

independent of the CCR5 D32 genotype. Moreover, this SNP in

DYRK1A was significantly associated with in vivo endpoints in two

independent cohorts. SNPs in four other genes were not replicated

in the small in vitro replication cohort, possibly reflecting

insufficient power. However, the identified SNP in SPOCK3 was

replicated in one of the in vivo GWAS.

The use of, or even the dependence on, certain cellular factors

by HIV-1 can differ between the various target cells such as T cells

and macrophages. For example, the cellular factors GATA-3,

ETS-1 and NF-ATc are T cell specific [53,54], whereas C/EBPb
is required for HIV-1 replication in macrophages, but not in T

cells [55,56]. To test whether our top SNPs were macrophage-

specific, we investigated if these SNPs were also associated with

HIV-1 replication in CD4+ T cells. Genotyping DNA from 128

blood donors for whom the level of HIV-1 replication in PHA-

stimulated CD4+ T cells was previously determined [57], revealed

no association between the level of HIV-1 replication in T cells

and the genotype of the five SNPs tested. This finding could

indeed be an indication that the effects of some of the SNPs that

we have identified are macrophage-specific, but also could reflect

lack of power (n = 128, and not only extreme phenotypes). The

finding that the SNP rs12483205 in DYRK1A was associated with

in vivo endpoints could indicate a role for HIV-1 infection of

macrophages in disease progression.

DYRK1A is a kinase that phosphorylates serine and threonine

residues. The gene encoding for this kinase is located on the Down

syndrome critical region on chromosome 21 which is thought to be

responsible for the features of Down syndrome. For this reason,

the emphasis of DYRK1A research has been on its role in trisomy

21 and neurological dysfunction [58–63]. Substrates for DYRK1A

comprise among many others the transcription factors CREB [64],

FKHR [65], GLI1 [66], NFAT [67,68] and STAT3 [69]. This

large number of protein interactions and substrates described for

DYRK1A strongly suggests it plays an important role in the

regulation of gene expression and cell function. While the

molecular mechanisms underlying the effect of DYRK1A on

HIV-1 replication in MDM remain to be unraveled, the critical

role of kinases in general for the replication of HIV-1 in

macrophages has already been established [70–75].

Both SNPs in MOAP1 that we found to be associated with HIV-

1 replication in MDM are in close proximity to the UBR7 gene

region (44 and 47 kb for rs1046099 and rs1270629 respectively),

yet the degree of LD is fairly low (r2 = 0.28 and 0.35 for rs1046099

and rs1270629 respectively) which could indicate that the

observed associations for the SNPs in UBR7 and MOAP1 with

HIV-1 replication are independent of each other. MOAP1 is a

homodimeric protein that binds both proapoptotic (BAX) and

prosurvival (BCL2) molecules [76]. MOAP1 has no known direct

effect on HIV-1 replication. However, it is well recognized that

HIV-1 infection affects the regulation of programmed cell death

(reviewed in [77]) and that host factors induce apoptosis during the

infection process to prevent viral dissemination [78,79]. This host

factor-induced apoptosis was found to be associated with reduced

HIV-1 replication in MDM [78,79]. Only very little is known

about UBR7. However, studies on other members of the UBR

family support the hypothesis that UBR7 is be associated with

HIV-1 replication. Proteins of the UBR family are E3 ligases that

recognize degradation signals at the N-terminus of proteins (N-

degrons) and conjugate ubiquitin to the target protein [80]. The

HIV-1 protein integrase contains an N-terminal phenylalanine

that is recognized as a degradation signal by UBR1, UBR2 and

UBR4 [80,81] and indeed, these proteins control the level of HIV-

1 integrase [80]. Knocking down UBR1, UBR2 and UBR4

resulted in higher levels of HIV-1 integrase [80], yet inhibition of

the proteasome resulted in a further increase of HIV-1 integrase

[80], suggesting the presence of other E3 ligases that target N-

degrons of HIV-1 integrase. The results of our study could indicate

that UBR7 affects HIV-1 replication in MDM through regulation

of HIV-1 integrase.

In addition to the SNP in DYRK1A we also found associations

for rs17519417 in SPOCK3 with time to progression to AIDS.

SPOCK3, also referred to as Testican 3, is a proteoglycan and one

of the components of the extracellular matrix. It inhibits

processing of metalloproteinase 2 (MMP-2) [82]. There are

indications that MMP-2 might play a role in the pathogenesis of

AIDS-related Kaposi’s sarcoma [83,84] or HIV-1 associated

dementia [85–87].

While we could not replicate the GWAS result for the SNP in

PDE8A, results from other in vitro studies strongly suggest that

PDE8A plays an important role in the replication cycle of HIV-1.

Phosphodiesterase 8A (PDE8A) specifically hydrolyses cAMP to

AMP. Previous studies that showed strong inhibition of HIV-1

replication after efficient knock-down [38], interaction between

HIV-1 Tat protein and PDE8A [88,89] and the deleterious effect

of high levels of cAMP on HIV-1 replication [90], all profoundly

suggest that this type of phosphodiesterase is indeed important for

in vitro HIV-1 replication.

To further validate our findings it will be important to also

investigate the role of the identified SNPs and genes in HIV-1

related pathologies that are more specifically affected by

macrophages, such as HIV-1 associated dementia and AIDS

related lymphomas [91]. Here, the contribution of macrophages

could be more eminent than in cohorts that study time to

progression to AIDS, which might be more T cell dependent,

especially since sometimes AIDS is defined by CD4+ T cell counts.

Follow-up experiments that will identify the causal SNP and

study its effect on the primary protein structure, protein folding,

alternative splicing or expression (level, localization and timing)

will be essential to better understand the precise mechanism by

which this SNP affects HIV-1 replication in MDM. This will be a

valuable step that might help determine if, and to what extent the

host protein can be efficiently targeted by novel antiretroviral

drugs. Finding a SNP in a gene encoding the kinase DYRK1A

that affects HIV-1 replication, holds great promise for finding

molecules to be safely used as potentially novel anti-HIV-1

medication [92].

Materials and Methods

Ethics statement
This study has been conducted in accordance with the ethical

principles set out in the declaration of Helsinki, written informed

consent was obtained from all participants and was approved by

the Medical Ethics Committee of the Academic Medical Center in

Amsterdam and the Ethics Advisory Body of the Sanquin Blood

Supply Foundation, The Netherlands.

Study population
We previously determined the ability of HIV-1 to replicate in

monocyte-derived macrophages (MDM) from 429 different

healthy seronegative blood donors [39]. In brief, Gag p24 levels

were measured in MDM culture supernatant 14 days post

infection by an in-house enzyme-linked immunosorbent assay.

To correct for differences in the number of viable MDM present at

day 14 post infection, p24 levels were expressed per 10,000 cells.

Since monocyte isolations were performed in four time frames and

by two operators, p24 levels were normalized by dividing through
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the median per period and operator. These normalized p24 levels

were subsequently used as a measure for in vitro HIV-1 replication

in MDM.

After excluding donors that were homozygous for the 32 base

pair deletion in CCR5 (n = 5) or not from European decent

(n = 30), we selected 192 individuals whose MDM gave the highest

(n = 96) or the lowest (n = 96) p24 production in vitro, for SNP

genotyping; thus representing two groups of donors with MDM

that had a more extreme phenotype (Table 1). Inclusion of

donors with extreme phenotypes is known to increase power in

genetic association studies [93]. These two groups with a more

extreme phenotype were separated by a group with intermediate

HIV-1 replication in MDM which consisted of 202 donors. There

was no difference in age or distribution of males and females

between the group with MDM that had low HIV-1 replication

and the group with MDM that had high Gag p24 production

(p = 0.95, Pearson chi-square test and p = 0.37, two sample t-test,

respectively; Table 1). One donor from the group with low in vitro

HIV replication in MDM was excluded for further analysis

because the corresponding DNA samples did not pass the quality

control (SNP call rate ,0.98; see paragraph ‘‘Quality control of

SNP genotyping data’’ below).

Cells (monocytes and lymphocytes) used to replicate the

genome-wide association study (GWAS) findings were derived

from blood samples collected from an independent group of 32

healthy blood donors (replication cohort).

Genotyping
Peripheral blood lymphocytes (PBL) from each donor were used

for DNA isolation using the QIAamp ‘‘DNA blood mini kit’’

(Qiagen, Valencia, CA, USA). For the two groups of donors whose

MDM had highest (n = 96 donors) or lowest (n = 96 donors) in vitro

HIV Gag p24 production, we used the Illumina Infinium Human

Hap 610-Quad BeadChip (Illumina, San Diego, CA, USA) [94]

for SNP genotyping. ABI TaqManH SNP genotyping assays were

used to genotype DNA from the replication cohort for rs12483205

(C_31609775_10), rs12909130 (C_1342209_10) as a proxy for

rs2304418, rs2905 (C_3236245_20), rs1046099 (C_7585751_10)

and rs17519417 (C_33238869_10) (Applied Biosystems, Carlsbad,

CA, USA). All TaqManH assays were run on a LightCyclerH 480

system (Roche, Basel, Switzerland) using the following amplifica-

tion cycles: 10 min 95uC; 50 cycles of 15 sec 95uC, 1 min 60uC.

Quality control of SNP genotyping data
One donor DNA sample did not pass the minimal genotyping

call rate threshold of 98% and this sample was excluded for further

SNP association analysis. The Illumina 610Q SNP bead chip

contained 620,901 markers to detect common genetic variation,

including 21,890 markers for copy number variation (CNV). After

excluding a total of 126,245 SNPs (minor allele frequency ,0.05,

or SNP call frequency ,0.98, or SNPs for which there were no

donors homozygous for the minor allele) and copy number

variation markers, 494,656 SNPs were left to be tested for

association between genotype and in vitro HIV-1 replication

MDM. Violation of Hardy-Weinberg equilibrium was assessed

post-analysis for all SNPs with p,561025. Gender calls in

BeadStudio (version 3.1.3.0) were compared with self-reported

gender and were found to match for all donors (n = 191).

Identification of population stratification
Donors who reported that either one or more parents or grand

parents were born outside of Europe had been excluded from

further analysis (as described in the paragraph ‘‘Study population’’

above). The genetic homogeneity of the genotyped donors whose

MDM gave lowest (n = 96) or highest (n = 96) Gag p24 production

in vitro was confirmed by both Structure [95] and Eigenstrat [96]

analysis. As expected, the Q-Q plot displaying the normality of the

p value distribution did not show deviations from what is expected

under the null hypothesis (l= 1.0024; l= 1.0 is expected with a

null hypothesis; Figure S4), indicating little effect of population

stratification.

Statistical analysis
We set a lower detection limit (background signal) for the

normalized p24 values based on the highest results that we found

for a donor that was homozygous for the 32 base pair deletion in

CCR5. Normalized p24 values were log10 transformed to allow for

parametric testing.

Association was tested assuming an additive relationship

between the genetic variants (wild-type, heterozygous and

homozygous for the minor allele) and phenotype, using linear

regression. Permutation testing was done to empirically determine

the corresponding p value based on the observed linear regression

F-statistic relative to the distribution of the F-statistic estimated

from 107 permutations of the genotypes. All R code and data used

for the calculations can be found as supplementary online material

(Tables S1, S2, S3, S4 and S5 and text file ‘‘R Scripts S1’’).

Linkage disequilibrium (LD) between SNPs was calculated using

data obtained from genotyping DNA from our studied population

(n = 191) with the Illumina SNP chip, using Haploview software

(version 4.2) [50]. SNP genotype imputations for our study

population were performed using Impute software [48] and the

Caucasian HapMap population (release 21) as the reference panel.

DYRK1A transcript detection in monocyte-derived
macrophages

Seven day old MDM and U87 cells were used for RNA isolation

and subsequent cDNA synthesis using the Roche ‘‘high pure RNA

isolation’’ and ‘‘transcriptor first strand cDNA synthesis’’ kit

(Roche, Basel, Switzerland). To uniquely detect the presence of

transcript variants 1, 2, 3 and 5, we used primer pairs 59-

TGATATTGTCATGTTACAGAGGCGG-39 (forward) and 59-

CTGACGCACCTGGGGACTG-39 (reverse), 59-TGTCTCTG-

AGGTTCTTTTCCAGTG-39 (forward) and 59-AGCACCC-

TCTCAATTCCCAATGCC-39 (reverse), 59-GCTCGCACGTG-

GTTCATTTGCT-39 (forward) and 59-TCCTTAGACAGGA-

ACGTCATGAACCT-39 (reverse), and 59-CAGGAGGACCT-

GGTGGGCGA-39 (forward) and 59-TGCTGACGCACCT-

GAGCTTG-39 (reverse) respectively (Figure S3). For the

detection of transcript variants 1, 2, 3 and 5 the following

amplification cycles were used: 2 min 95uC; 35 cycles of 30 sec

95uC, 30 sec 62uC (64uC for transcript 1), 30 sec 72uC (90 sec for

transcript 1); 10 min 72uC.

Supporting Information

Figure S1 Manhattan plot displaying the -log p value of the

association for 494,656 SNPs tested with in vitro replication of

HIV-1 in monocyte-derived macrophages. Signals are seen for

SNPs in chromosome 14 (SNPs in UBR7 or MOAP1), 15 (SNPs in

PDE8A) and 21 (SNP rs12483205 in DYRK1A, and intergenic SNP

rs2828074 .14 Mb upstream of rs12483205). The threshold for

genome-wide significance is -log p.7 (dashed line). The plot was

created using the WGA viewer software version 1.26G [97].

(TIF)

Figure S2 Association between HIV-1 replication in monocyte-

derived macrophages (MDM) and the SNP rs12483205 genotype
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in the gene DYRK1A, for the total group of 393 blood donors (A),

and this group of donors joined with donors from the replication

cohort for which we had normalized data (n = 28; total n = 421)

(B). DNA from donors with MDM that had low (n = 95) or high

(n = 96) HIV-1 replication in vitro was used for the genome-wide

association screen. Inclusion of genotype and normalized p24 data

from donors with MDM that had intermediate Gag p24

production did not change the strength of the association

(p = 2.0961025), whereas combining the initial group of donors

(n = 393) and the replication cohort (n = 28) increased the strength

of the association (p = 4.8461026). MAJ, homozygous for the

major allele; HZ, heterozygote; MIN, homozygous for the minor

allele.

(TIF)

Figure S3 Schematic representation of the alignment of all four

known DYRK1A mRNAs. Primers are depicted as arrows and were

used to amplify a unique region for each of the transcripts. The

start and stop codons are shown as green and red vertical lines

respectively.

(TIF)

Figure S4 Q-Q plot showing the expected and observed

distribution of the p values. The line and the corresponding

Lambda (l) suggest there are no systematic differences in allele

frequencies between subpopulations in our study population due

to differences in genetic background of donors. The plot was

created using the WGA viewer software version 1.26G [97].

(TIF)

Table S1

(TXT)

Table S2

(TXT)

Table S3

(TXT)

Table S4

(TXT)

Table S5

(TXT)

R Scripts S1

(TXT)
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