687 research outputs found
Morphology and structural characterization of organized monolayers by Brewster angle microscopy.
Anisotropic second-order nonlinearities of organic monolayers.
Monolayers prepared from hemicyanine chromophores of high second-order nonlinearity (β=1.3×10−26 esu at resonance) have been used to study anisotropies of the concomitant χ(2)-susceptibility tensor. All components of this third-rank tensor have been determined by Fourier analysis of the anisotropic coverage density Ns(φ) with respect to the angle of rotation about surface normal. Depending on the preparation both Cs and C2v symmetry could be identified
Observation of pick-up ions in the solar wind: Evidence for the source of the anomalous cosmic ray component?
Singly ionized energetic helium has been observed in the solar wind by using the time of flight spectrometer SULEICA on the AMPTE/IRM satellite between September and December, 1984. The energy density spectrum shows a sharp cut off which is strongly correlated with the four fold solar wind bulk energy. The absolute flux of the He(+)ions of about 10000 ion/sq cm.s is present independent of the IPL magnetic field orientation. The most likely source is the neutral helium of the interstellar wind which is ionized by solar UV radiation. It is suggested that these particles represent the source of the anomalous cosmic ray component
Warm Breeze from the starboard bow: a new population of neutral helium in the heliosphere
We investigate the signals from neutral He atoms observed from Earth orbit in
2010 by IBEX. The full He signal observed during the 2010 observation season
can be explained as a superposition of pristine neutral interstellar He gas and
an additional population of neutral He that we call the Warm Breeze. The Warm
Breeze is approximately two-fold slower and 2.5 times warmer than the primary
interstellar He population, and its density in front of the heliosphere is ~7%
that of the neutral interstellar helium. The inflow direction of the Warm
Breeze differs by ~19deg from the inflow direction of interstellar gas. The
Warm Breeze seems a long-term feature of the heliospheric environment. It has
not been detected earlier because it is strongly ionized inside the
heliosphere, which brings it below the threshold of detection via pickup ion
and heliospheric backscatter glow observations, as well as by the direct
sampling of GAS/Ulysses. Possible sources for the Warm Breeze include (1) the
secondary population of interstellar helium, created via charge exchange and
perhaps elastic scattering of neutral interstellar He atoms on interstellar He+
ions in the outer heliosheath, or (2) a gust of interstellar He originating
from a hypothetic wave train in the Local Interstellar Cloud. A secondary
population is expected from models, but the characteristics of the Warm Breeze
do not fully conform to modeling results. If, nevertheless, this is the
explanation, IBEX-Lo observations of the Warm Breeze provide key insights into
the physical state of plasma in the outer heliosheath. If the second hypothesis
is true, the source is likely to be located within a few thousand of AU from
the Sun, which is the propagation range of possible gusts of interstellar
neutral helium with the Warm Breeze characteristics against dissipation via
elastic scattering in the Local Cloud.Comment: submitted to ApJ
Evolving outer heliosphere: Large-scale stability and time variations observed by the Interstellar Boundary Explorer
The first all-sky maps of Energetic Neutral Atoms (ENAs) from the Interstellar Boundary Explorer (IBEX) exhibited smoothly varying, globally distributed flux and a narrow ribbon of enhanced ENA emissions. In this study we compare the second set of sky maps to the first in order to assess the possibility of temporal changes over the 6 months between views of each portion of the sky. While the large-scale structure is generally stable between the two sets of maps, there are some remarkable changes that show that the heliosphere is also evolving over this short timescale. In particular, we find that (1) the overall ENA emissions coming from the outer heliosphere appear to be slightly lower in the second set of maps compared to the first, (2) both the north and south poles have significantly lower (similar to 10-15%) ENA emissions in the second set of maps compared to the first across the energy range from 0.5 to 6 keV, and (3) the knot in the northern portion of the ribbon in the first maps is less bright and appears to have spread and/or dissipated by the time the second set was acquired. Finally, the spatial distribution of fluxes in the southernmost portion of the ribbon has evolved slightly, perhaps moving as much as 6 degrees (one map pixel) equatorward on average. The observed large-scale stability and these systematic changes at smaller spatial scales provide important new information about the outer heliosphere and its global interaction with the galaxy and help inform possible mechanisms for producing the IBEX ribbon
Interstellar neutral helium in the heliosphere from IBEX observations. III. Mach number of the flow, velocity vector, and temperature from the first six years of measurements
We analyzed observations of interstellar neutral helium (ISN~He) obtained
from the Interstellar Boundary Explorer (IBEX) satellite during its first six
years of operation. We used a refined version of the ISN~He simulation model,
presented in the companion paper by Sokol_et al. 2015, and a sophisticated data
correlation and uncertainty system and parameter fitting method, described in
the companion paper by Swaczyna et al 2015. We analyzed the entire data set
together and the yearly subsets, and found the temperature and velocity vector
of ISN~He in front of the heliosphere. As seen in the previous studies, the
allowable parameters are highly correlated and form a four-dimensional tube in
the parameter space. The inflow longitudes obtained from the yearly data
subsets show a spread of ~6 degree, with the other parameters varying
accordingly along the parameter tube, and the minimum chi-square value is
larger than expected. We found, however, that the Mach number of the ISN~He
flow shows very little scatter and is thus very tightly constrained. It is in
excellent agreement with the original analysis of ISN~He observations from IBEX
and recent reanalyses of observations from Ulysses. We identify a possible
inaccuracy in the Warm Breeze parameters as the likely cause of the scatter in
the ISN~He parameters obtained from the yearly subsets, and we suppose that
another component may exist in the signal, or a process that is not accounted
for in the current physical model of ISN~He in front of the heliosphere. From
our analysis, the inflow velocity vector, temperature, and Mach number of the
flow are equal to lambda_ISNHe = 255.8 +/- 0.5 degree, beta_ISNHe = 5.16 +/-
0.10 degree, T_ISNHe = 7440 +/- 260 K, v_ISNHe = 25.8 +/- 0.4$ km/s, and
M_ISNHe = 5.079 +/- 0.028, with uncertainties strongly correlated along the
parameter tube.Comment: Updated reference
Late Maastrichtian carbon isotope stratigraphy and cyclostratigraphy of the Newfoundland Margin (Site U1403, IODP Expedition 342)
Earth’s climate during the Maastrichtian (latest Cretaceous) was punctuated by brief warming and cooling episodes, accompanied by perturbations of the global carbon cycle. Superimposed on a long-term cooling trend, the middle Maastrichtian is characterized by deep-sea warming and relatively high values of stable carbon-isotope ratios, followed by strong climatic variability towards the end of the Cretaceous. A lack of knowledge on the timing of climatic change inhibits our understanding of underlying causal mechanisms. We present an integrated stratigraphy from Integrated Ocean Drilling Program (IODP) Site U1403, providing an expanded deep ocean record from the North Atlantic (Expedition 342, Newfoundland Margin). Distinct sedimentary cyclicity suggests that orbital forcing played a major role in depositional processes, which is confirmed by statistical analyses of high resolution elemental data obtained by X-ray fluorescence (XRF) core scanning. Astronomical calibration reveals that the investigated interval encompasses seven 405-kyr cycles (Ma4051 to Ma4057) and spans the 2.8 Myr directly preceding the Cretaceous/Paleocene (K/Pg) boundary. A high-resolution carbon-isotope record from bulk carbonates allows us to identify global trends in the late Maastrichtian carbon cycle. Low-amplitude variations (up to 0.4‰) in carbon isotopes at Site U1403 match similar scale variability in records from Tethyan and Pacific open-ocean sites. Comparison between Site U1403 and the hemipelagic restricted basin of the Zumaia section (northern Spain), with its own well-established independent cyclostratigraphic framework, is more complex. Whereas the pre-K/Pg oscillations and the negative values of the Mid-Maastrichtian Event (MME) can be readily discerned in both the Zumaia and U1403 records, patterns diverge during a ~ 1 Myr period in the late Maastrichtian (67.8–66.8 Ma), with Site U1403 more reliably reflecting global carbon cycling. Our new carbon isotope record and cyclostratigraphy offer promise for Site U1403 to serve as a future reference section for high-resolution studies of late Maastrichtian paleoclimatic change
Determination of the electrostatic potential of positively charged monolayers at the air/water interface by means of fluorometric titration of 4-heptadecyl-7-hydroxycoumarin.
- …
