98 research outputs found

    Machine learning approaches for predicting health risk of cyanobacterial blooms in Northern European Lakes

    Get PDF
    Cyanobacterial blooms are considered a major threat to global water security with documented impacts on lake ecosystems and public health. Given that cyanobacteria possess highly adaptive traits that favor them to prevail under different and often complicated stressor regimes, predicting their abundance is challenging. A dataset from 822 Northern European lakes is used to determine which variables better explain the variation of cyanobacteria biomass (CBB) by means of stepwise multiple linear regression. Chlorophyll-a (Chl-a) and total nitrogen (TN) provided the best modelling structure for the entire dataset, while for subsets of shallow and deep lakes, Chl-a, mean depth, TN and TN/TP explained part of the variance in CBB. Path analysis was performed and corroborated these findings. Finally, CBB was translated to a categorical variable according to risk levels for human health associated with the use of lakes for recreational activities. Several machine learning methods, namely Decision Tree, K-Nearest Neighbors, Support-vector Machine and Random Forest, were applied showing a remarkable ability to predict the risk, while Random Forest parameters were tuned and optimized, achieving a 95.81% accuracy, exceeding the performance of all other machine learning methods tested. A confusion matrix analysis is performed for all machine learning methods, identifying the potential of each method to correctly predict CBB risk levels and assessing the extent of false alarms; random forest clearly outperforms the other methods with very promising results.publishedVersio

    From national monitoring to transnational indicators: reporting and processing of aquatic biology data under the European Environment Agency’s State of the Environment data flow

    Get PDF
    Biological monitoring data from aquatic ecosystems are collected from European countries on a yearly basis by the European Environment Agency (EEA) through the Water Information System for Europe (WISE). The WISE-SoE (State of Environment) data flows provide indicators of pressures, states and impacts of surface waters and groundwaters on a pan-European scale. The WISE-2 Biology was established to obtain a harmonised flow of biology data reported annually as Ecological Quality Ratios (EQRs) from European surface waters, as a supplement to the mandatory 6-yearly reporting of ecological status of water bodies for the Water Framework Directive. The purposes of this paper are 1) to describe the compilation of national aquatic biology monitoring data indicators and to inform about the public availability of these data, 2) to give an overview of the reported data and indicate the potential for assessments based on these data, and 3) to illustrate the potential for further use of the underlying species abundance data in biodiversity research and assessment. WISE-2 data are reported for the following biological quality elements: phytoplankton, phytobenthos, macrophytes, macroalgae, angiosperms, benthic invertebrates and fish in rivers, lakes, transitional and/or coastal waters. The EQR values represent the deviation from reference conditions. The final processed and quality-checked data are published in EEA’s database Waterbase - Biology, which currently holds data from more than 13,000 waterbodies in 26 countries from the reporting years 2011–2021. Examples of time series aggregated by geographic regions give an indication of the type of trends that can be obtained from the reported data at the nEQR scale. However, the current results are representative only for certain geographic regions with high coverage of water bodies. Within the European research project EuropaBON (Europa Biodiversity Observation Network), the use of WISE-2 data can be leveraged to support biodiversity policy and conservation planning. EuropaBON’s online database provides an overview of how biodiversity monitoring schemes across Europe flows through different integration nodes, to produce Essential Biodiversity Variables and other policy-relevant indicators. Here, we use the EuropaBON visualisation tool to illustrate the WISE-2 as a European integration node for 157 biology datasets via the national integration nodes.publishedVersio

    Shifted dynamics of plankton communities in a restored lake: exploring the effects of climate change on phenology through four decades

    Get PDF
    Lake surface temperatures have increased globally in recent decades. Climate change can affect lake biota directly via enhanced water temperatures, shorter ice cover duration and prolonged stratification, and indirectly via changes in species interactions. Changes in the seasonal dynamics of phytoplankton and zooplankton can further affect whole lake ecosystems. However, separating the effects of climate change from the more direct and dominating effects of nutrients is a challenge. Our aim was to explore the ecological effects of climate change while accounting for the effects of re-oligotrophication in Lake Mjøsa, the largest lake in Norway. While restoration measures since the 1970s have resulted in strongly reduced nutrient levels, the surface water temperature has increased by almost 0.4°C decade-1 during the same period. We analysed long-term trends and abrupt changes in environmental and biological time series as well as changes in the seasonal dynamics of individual plankton taxa. The general long-term trends in phenology were diverging for phytoplankton (later peaks) vs. zooplankton (earlier peaks). However, individual taxa of both phytoplankton and zooplankton displayed earlier peaks. Earlier peaks of the phytoplankton group Cryptophyceae can be explained by increased spring temperature or other climate-related changes. Earlier onset of population growth of certain zooplankton species (Limnocalanus macrurus and Holopedium gibberum) can also be explained by climatic change, either directly (earlier temperature increase) or more indirectly (earlier availability of Cryptophyceae as a food source). In the long run, climate-related changes in both phytoplankton and zooplankton phenology may have implications for the fish communities of this lake.publishedVersio

    Influence of climate change and pesticide use practices on the ecological risks of pesticides in a protected Mediterranean wetland: A Bayesian network approach

    Get PDF
    Pollution by agricultural pesticides is one of the most important pressures affecting Mediterranean coastal wetlands. Pesticide risks are expected to be influenced by climate change, which will result in an increase of temperatures and a decrease in annual precipitation. On the other hand, pesticide dosages are expected to change given the increase in pest resistance and the implementation of environmental policies like the European ´Farm-to-Fork` strategy, which aims for a 50 % reduction in pesticide usage by 2030. The influence of climate change and pesticide use practices on the ecological risks of pesticides needs to be evaluated making use of realistic environmental scenarios. This study investigates how different climate change and pesticide use practices affect the ecological risks of pesticides in the Albufera Natural Park (Valencia, Spain), a protected Mediterranean coastal wetland. We performed a probabilistic risk assessment for nine pesticides applied in rice production using three climatic scenarios (for the years 2008, 2050 and 2100), three pesticide dosage regimes (the recommended dose, and 50 % increase and 50 % decrease), and their combinations. The scenarios were used to simulate pesticide exposure concentrations in the water column of the rice paddies using the RICEWQ model. Pesticide effects were characterized using acute and chronic Species Sensitivity Distributions built with toxicity data for aquatic organisms. Risk quotients were calculated as probability distributions making use of Bayesian networks. Our results show that future climate projections will influence exposure concentrations for some of the studied pesticides, yielding higher dissipation and lower exposure in scenarios dominated by an increase of temperatures, and higher exposure peaks in scenarios where heavy precipitation events occur right after pesticide application. Our case study shows that pesticides such as azoxystrobin, difenoconazole and MCPA are posing unacceptable ecological risks for aquatic organisms, and that the implementation of the ´Farm-to-Fork` strategy is crucial to reduce them.publishedVersio

    Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network

    Get PDF
    Excess nutrient inputs and climate change are two of multiple stressors affecting many lakes worldwide. Lake Vansjø in southern Norway is one such eutrophic lake impacted by blooms of toxic blue-green algae (cyanobacteria), and classified as moderate ecological status under the EU Water Framework Directive. Future climate change may exacerbate the situation. Here we use a set of chained models (global climate model, hydrological model, catchment phosphorus (P) model, lake model, Bayesian Network) to assess the possible future ecological status of the lake, given the set of climate scenarios and storylines common to the EU project MARS (Managing Aquatic Ecosystems and Water Resources under Multiple Stress). The model simulations indicate that climate change alone will increase precipitation and runoff, and give higher P fluxes to the lake, but cause little increase in phytoplankton biomass or changes in ecological status. For the storylines of future management and land-use, however, the model results indicate that both the phytoplankton biomass and the lake ecological status can be positively or negatively affected. Our results also show the value in predicting a biological indicator of lake ecological status, in this case, cyanobacteria biomass with a BN model. For all scenarios, cyanobacteria contribute to worsening the status assessed by phytoplankton, compared to using chlorophyll-a alone.publishedVersio

    Pharmaceutical pollution: Prediction of environmental concentrations from national wholesales data

    Get PDF
    The regulation and monitoring of pharmaceutical pollution in Europe lag behind that of more prominent groups. However, the repurposing of sales data to predict surface water environmental concentrations is a promising supplement to more commonly used market-based risk assessment and measurement approaches. The Norwegian Institute of Public Health (NIPH) has since the 1980s compiled the Drug Wholesale Statistics database - covering all sales of both human and veterinary pharmaceuticals to retailers, pharmacies, and healthcare providers. To date, most similar works have focused either on a small subset of Active Pharmaceutical Ingredients (APIs) or used only prescription data, often more readily available than wholesale data, but necessarily more limited. By using the NIPH’s product wholesale records, with additional information on API concentrations per product from, we have been able to calculate sales weights per year for almost 900 human and veterinary APIs for the period 2016–2019. In this paper, we present our methodology for converting the provided NIPH data from a public health to an ecotoxicological resource. From our derived dataset, we have used an equation to calculate Predicted Environmental Concentration per API for inland surface waters, a key component of environmental risk assessment. We further describe our filtering to remove ecotoxicological-exempt and data deficient APIs. Lastly, we provide a limited comparison between our dataset and similar publicly available datasets for a subset of APIs, as a validation of our approach and a demonstration of the added value of wholesale data. This dataset will provide the best coverage yet of pharmaceutical sales weights for an entire nation. Moreover, our developed routines for processing 2016–2019 data can be expanded to older Norwegian wholesales data (1974–present). Consequently, our work with this dataset can contribute to narrowing the gap between desk-based predictions of exposure from consumption, and empirical but expensive environmental measurement.publishedVersio

    European Freshwater Ecosystem Assessment: Cross-walk between the Water Framework Directive and Habitats Directive types, status and pressures

    Get PDF
    The EU policies on the freshwater environment and nature and biodiversity are closely linked. The aims of the Water Framework Directive (WFD) and the Habitat Directive (HD) are to achieve good status for water bodies (WFD) and for habitats and species (HD) respectively. The types of rivers and lakes and their ecological status and pressures under the WFD are not directly comparable to the conservation status and threats for freshwater habitats and species under the HD (EC 2011a). The objective of this study has been to explore the possibilities of linking WFD and HD information on types of water bodies and habitats, and their status, pressures and measures, using WISE WFD information on types, ecological status, pressures and measures (EEA 2012, ETC-ICM 2012) and HD information on habitat types, conservation status and threats (EC 2007). The results may be used as input to the EEA Freshwater Ecosystem Assessment in 2015, and also for future European assessments of specific objectives, status and trends for various types of rivers and lakes after the reporting of the WFD 2nd RBMPs and the next HD article 17 reporting. The outcome may also be used as a basis for discussions of the potential and limitations for WFD and HD synergies in terms of monitoring programmes, assessment systems and measures to improve status. The general methodology used in this report is to analyse data and information reported by Member States on WFD types, ecological status and pressures in river and lake water bodies and on Habitats Directive freshwater habitats and their conservation status and threats. The major data sources used are the WISE-WFD database and the HD Article 17 databaseJRC.H.1-Water Resource

    A Decision Support System to Predict Acute Fish Toxicity

    Get PDF
    We present a decision support system using a Bayesian network to predict acute fish toxicity from multiple lines of evidence. Fish embryo toxicity testing has been proposed as an alternative to using juvenile or adult fish in acute toxicity testing for hazard assessments of chemicals. The European Chemicals Agency has recommended the development of a so-called weight-of-evidence approach for strengthening the evidence from fish embryo toxicity testing. While weight-of-evidence approaches in the ecotoxicology and ecological risk assessment community in the past have been largely qualitative, we have developed a Bayesian network for using fish embryo toxicity data in a quantitative approach. The system enables users to efficiently predict the potential toxicity of a chemical substance based on multiple types of evidence including physical and chemical properties, quantitative structure-activity relationships, toxicity to algae and daphnids, and fish gill cytotoxicity. The system is demonstrated on three chemical substances of different levels of toxicity. It is considered as a promising step towards a probabilistic weight-of-evidence approach to predict acute fish toxicity from fish embryo toxicity.publishedVersio

    Development of a hybrid Bayesian network model for predicting acute fish toxicity using multiple lines of evidence

    Get PDF
    A hybrid Bayesian network (BN) was developed for predicting the acute toxicity of chemicals to fish, using data from fish embryo toxicity (FET) testing in combination with other information. This model can support the use of FET data in a Weight-of-Evidence (WOE) approach for replacing the use of ju-venile fish. The BN predicted correct toxicity intervals for 69%–80% of the tested substances. The model was most sensitive to components quantified by toxicity data, and least sensitive to compo-nents quantified by expert knowledge. The model is publicly available through a web interface. Fur-ther development of this model should include additional lines of evidence, refinement of the discre-tisation, and training with a larger dataset for weighting of the lines of evidence. A refined version of this model can be a useful tool for predicting acute fish toxicity, and a contribution to more quantitative WOE approaches for ecotoxicology and environmental assessment more generally.publishedVersio
    • …
    corecore