533 research outputs found

    Detecting phonons and persistent currents in toroidal Bose-Einstein condensates by means of pattern formation

    Full text link
    We theoretically investigate the dynamic properties of a Bose-Einstein condensate in a toroidal trap. A periodic modulation of the transverse confinement is shown to produce a density pattern due to parametric amplification of phonon pairs. By imaging the density distribution after free expansion one obtains i) a precise determination of the Bogoliubov spectrum and ii) a sensitive detection of quantized circulation in the torus. The parametric amplification is also sensitive to thermal and quantum fluctuations.Comment: 4 pages, 4 figures; new figures, revised version to appear as a Rapid Communication in Physical Review

    Enhancement of the scissors mode of an expanding Bose-Einstein condensate

    Full text link
    We study the time-evolution of the scissors mode of a Bose-Einstein condensate during the ballistic expansion after release from the magnetic trap. We show that despite the nontrivial character of the superfluid expansion, the sinusoidal behavior of the scissor oscillations is recovered after an asymptotic expansion, with an enhancement of the final amplitude. We investigate this phenomenon with a condensate held in an elongated magnetostatic potential, whose particular shape allows for the excitation of the scissors mode.Comment: RevTeX, 5 figure

    Subdiffusion of nonlinear waves in quasiperiodic potentials

    Get PDF
    We study the spatio-temporal evolution of wave packets in one-dimensional quasiperiodic lattices which localize linear waves. Nonlinearity (related to two-body interactions) has destructive effect on localization, as recently observed for interacting atomic condensates [Phys. Rev. Lett. 106, 230403 (2011)]. We extend the analysis of the characteristics of the subdiffusive dynamics to large temporal and spatial scales. Our results for the second moment m2m_2 consistently reveal an asymptotic m2t1/3m_2 \sim t^{1/3} and intermediate m2t1/2m_2 \sim t^{1/2} laws. At variance to purely random systems [Europhys. Lett. 91, 30001 (2010)] the fractal gap structure of the linear wave spectrum strongly favors intermediate self-trapping events. Our findings give a new dimension to the theory of wave packet spreading in localizing environments

    Optically-induced lensing effect on a Bose-Einstein condensate expanding in a moving lattice

    Full text link
    We report the experimental observation of a lensing effect on a Bose-Einstein condensate expanding in a moving 1D optical lattice. The effect of the periodic potential can be described by an effective mass dependent on the condensate quasi-momentum. By changing the velocity of the atoms in the frame of the optical lattice we induce a focusing of the condensate along the lattice direction. The experimental results are compared with the numerical predictions of an effective 1D theoretical model. Besides, a precise band spectroscopy of the system is carried out by looking at the real-space propagation of the atomic wavepacket in the optical lattice.Comment: 5 pages, 4 figures; minor changes applied and typos corrected; a new paragraph added; some references updated; journal reference adde

    Effect of interactions in the interference pattern of Bose-Einstein condensates

    Get PDF
    Understanding the effect of interactions in the phase evolution of expanding atomic Bose-Einstein condensates is fundamental to describing the basic phenomenon of matter wave interference. Many theoretical and experimental works tackled this problem, always with the implicit assumption that the mutual interaction between two expanding condensates rigidly modifies the phase evolution through an effective force. In this paper, we present a combined experimental and theoretical investigation of the interference profile of expanding Rb-87 condensates, with a specific focus on the effect of interactions. We come to the different conclusion that the mutual interaction produces local modifications of the condensate phase only in the region where the wave packets overlap.We acknowledge fruitful discussions with M. Fattori, L. Masi, M. Prevedelli, R. Corgier, and A. Smerzi and we thank M. Inguscio for continuous support. This work was supported by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund FEDER through Grant No. PGC2018-101355-B-I00 (MCIU/AEI/FEDER, UE), by the Basque Government through Grant No. IT986-16, by the European Commission through FET Flagship on Quantum Technologies-Qombs Project (Grant No. 820419), and by Fondazione Cassa di Risparmio Firenze through project "SUPERACI-Superfluid Atomic Circuits.

    Insulating Behavior of a Trapped Ideal Fermi Gas

    Full text link
    We investigate theoretically and experimentally the center-of-mass motion of an ideal Fermi gas in a combined periodic and harmonic potential. We find a crossover from a conducting to an insulating regime as the Fermi energy moves from the first Bloch band into the bandgap of the lattice. The conducting regime is characterized by an oscillation of the cloud about the potential minimum, while in the insulating case the center of mass remains on one side of the potential.Comment: 4 pages, 4 figure

    Dilute Bose gas with correlated disorder: A Path Integral Monte Carlo study

    Get PDF
    We investigate the thermodynamic properties of a dilute Bose gas in a correlated random potential using exact path integral Monte Carlo methods. The study is carried out in continuous space and disorder is produced in the simulations by a 3D speckle pattern with tunable intensity and correlation length. We calculate the shift of the superfluid transition temperature due to disorder and we highlight the role of quantum localization by comparing the critical chemical potential with the classical percolation threshold. The equation of state of the gas is determined in the regime of strong disorder, where superfluidity is suppressed and the normal phase exists down to very low temperatures. We find a T2T^2 dependence of the energy in agreement with the expected behavior in the Bose glass phase. We also discuss the major role played by the disorder correlation length and we make contact with a Hartree-Fock mean-field approach that holds valid if the correlation length is very large. The density profiles are analyzed as a function of temperature and interaction strength. Effects of localization and the depletion of the order parameter are emphasized in the comparison between local condensate and total density. At very low temperature we find that the energy and the particle distribution of the gas are very well described by the T=0 Gross-Pitaevskii theory even in the regime of very strong disorder.Comment: 27 pages, 20 figure

    An attempt to dissect a peripheral marker based on cell pathology in Parkinson's disease

    Get PDF
    Peripheral markers in Parkinson’s disease (PD) represent a hot issue to provide early diagnosis and assess disease progression. The gold standard marker of PD should feature the same reliability as the pathogenic alteration, which produces the disease itself. PD is foremost a movement disorder produced by a loss of nigrostriatal dopamine innervation, in which striatal dopamine terminals are always markedly reduced in PD patients to an extent, which never overlaps with controls. Similarly, a reliable marker of PD should possess such a non-overlapping feature when compared with controls. In the present study, we provide a novel pathological hallmark, the autophagosome, which in each PD patient was always suppressed compared with each control subject. Autophagosomes were counted as microtubule-associated proteins 1A/1B light chain 3B (LC3)-positive vacuoles at ultrastructural morphometry within peripheral (blood) blood mononuclear cells (PBMC). This also provides the gold standard to assess the autophagy status. Since autophagy may play a role in the pathogenesis of PD, autophagosomes may be a disease marker, while participating in the biology of the disease. Stoichiometric measurement of α-synuclein despite significantly increased in PD patients, overlapped between PD and control patients. Although the study need to be validated in large populations, the number of autophagy vacuoles is neither related with therapy (the amount was similarly suppressed in a few de novo patients), nor the age in PD or controls

    Chaos in effective classical and quantum dynamics

    Full text link
    We investigate the dynamics of classical and quantum N-component phi^4 oscillators in the presence of an external field. In the large N limit the effective dynamics is described by two-degree-of-freedom classical Hamiltonian systems. In the classical model we observe chaotic orbits for any value of the external field, while in the quantum case chaos is strongly suppressed. A simple explanation of this behaviour is found in the change in the structure of the orbits induced by quantum corrections. Consistently with Heisenberg's principle, quantum fluctuations are forced away from zero, removing in the effective quantum dynamics a hyperbolic fixed point that is a major source of chaos in the classical model.Comment: 6 pages, RevTeX, 5 figures, uses psfig, changed indroduction and conclusions, added reference

    Audio Books with Struggling Readers at the Elementary School Level

    Get PDF
    In a Title I school located in a southeastern state, 60% of 3rd grade students are reading below grade level. The state\u27s new reading initiative ties grade promotion to 3rd grade students reading on grade level. At the study site, administrators identified audio books as a possibly helpful reading tool. Vygotsky\u27s zone of proximal development theory, which holds that learners can learn new skills more readily with guided assistance, framed this study. The purpose of this quantitative, comparative design study was to explore the associations between the use of audio books and the reading levels of 3rd grade struggling readers. Research questions were used to compare the reading levels of struggling readers who use audio books with the reading levels of: (a) struggling readers reading silently, (b) at or above grade level readers who read with audio books, and (c) at or above grade level readers who read silently. Two 3rd grade classes were selected, with 25 students using audio books and 25 students reading silently, to participate in this project. Scores from the AR and from the pre- and posttest STAR assessments over a 9-week period were analyzed and compared using an independent samples t test to explore associations between the use of audio books and the comprehension and reading levels of the participants. Analysis of the results showed that the use of audiobooks was not significantly related to increased reading or comprehension levels for struggling readers. Significant improvements in reading comprehension were shown for students reading at or above grade level that read silently or used audio books. Based on the findings, a professional development project for teachers providing research-supported reading strategy instruction was developed. The findings may lead to improvements in instructional practices by encouraging the use of research-based reading strategies, which could promote positive social change by supporting greater academic success for elementary students through improved reading comprehension
    corecore