158 research outputs found

    Immunological reactivity of a human immunodeficiency virus type I derived peptide representing a consensus sequence of the GP120 major neutralizing region V3

    Get PDF
    To reduce the opportunities for human immunodeficiency virus type 1 (HIV-1) to evade vaccine induced immunity, the development of subunit vaccines must focus on the characterization of immunogenic epitopes, which are major targets for the immune system. The most dominant site for elicitation of neutralising immune response is located on the external envelope glycoprotein gp120 within the third variable domain (V3). To overcome virus type specificity of antibodies directed to the V3-domain we designed a 36 amino acids long gp120/V3-consensus peptide (V3-C36) based on published biological data and sequence comparisons of various HIV-1 virus isolates. This peptide contains a conserved core sequence which is suggested to form a surface-exposed beta-turn. This peptide also includes T-cell epitopes defined in mice and humans, an ADCC-epitope and two highly conserved cysteine residues which were oxidized to form a cystine derivate, thus allowing correct peptide folding. In ELISA-tests, this peptide reacts with at least 90% of randomly selected sera of European and African patients infected with HIV-1 and is recognized by three different HIV-1/V3 "type-specific" antisera (MN, RF, IIIB-strain). Using this peptide as immunogen in rabbits, antisera could be raised with highly cross-reactive and HIV-1/IIIB strain neutralizing properties. Moreover, HTLV/HIV-1/IIIB specific cytotoxic T-lymphocytes (CTLs) of BALB/c mice infected with a gp120 recombinant vaccinia virus recognized the central 16- and 12-mer peptides of the V3-C36 consensus peptide in cytolytic assays, indicating perfect compatibility of the consensus peptide with the IIIB-primed CTLs. The DNA-sequence encoding the V3-consensus loop region might be an important component in newly designed recombinant subunit vaccines. In addition, due to its broad serological reactivity, the V3-consensus peptide might play an important role in special diagnostic purposes

    Identification of a protein encoded in the EB-viral open reading frame BMRF2

    Get PDF
    Using monospecific rabbit sera against a peptide derived from a potential antigenic region of the Epstein-Barr viral amino acid sequence encoded in the open reading frame BMRF2 we could identify a protein-complex of 53/55 kDa in chemically induced B95-8, P3HR1 and Raji cell lines. This protein could be shown to be membrane-associated, as predicted by previous computer analysis of the secondary structure and hydrophilicity pattern, and may be a member of EBV-induced membrane proteins in lytically infected cells

    NS1 Specific CD8(+) T-Cells with Effector Function and TRBV11 Dominance in a Patient with Parvovirus B19 Associated Inflammatory Cardiomyopathy

    Get PDF
    Background: Parvovirus B19 (B19V) is the most commonly detected virus in endomyocardial biopsies (EMBs) from patients with inflammatory cardiomyopathy (DCMi). Despite the importance of T-cells in antiviral defense, little is known about the role of B19V specific T-cells in this entity. Methodology and Principal Findings: An exceptionally high B19V viral load in EMBs (115,091 viral copies/mg nucleic acids), peripheral blood mononuclear cells (PBMCs) and serum was measured in a DCMi patient at initial presentation, suggesting B19V viremia. The B19V viral load in EMBs had decreased substantially 6 and 12 months afterwards, and was not traceable in PBMCs and the serum at these times. Using pools of overlapping peptides spanning the whole B19V proteome, strong CD8(+) T-cell responses were elicited to the 10-amico-acid peptides SALKLAIYKA (19.7% of all CD8(+) cells) and QSALKLAIYK (10%) and additional weaker responses to GLCPHCINVG (0.71%) and LLHTDFEQVM (0.06%). Real-time RT-PCR of IFN gamma secretion-assay-enriched T-cells responding to the peptides, SALKLAIYKA and GLCPHCINVG, revealed a disproportionately high T-cell receptor Vbeta (TRBV) 11 expression in this population. Furthermore, dominant expression of type-1 (IFN gamma, IL2, IL27 and Tbet) and of cytotoxic T-cell markers (Perforin and Granzyme B) was found, whereas gene expression indicating type-2 (IL4, GATA3) and regulatory T-cells (FoxP3) was low. Conclusions: Our results indicate that B19V Ag-specific CD8(+) T-cells with effector function are involved in B19V associated DCMi. In particular, a dominant role of TRBV11 and type-1/CTL effector cells in the T-cell mediated antiviral immune response is suggested. The persistence of B19V in the endomyocardium is a likely antigen source for the maintenance of CD8(+) T-cell responses to the identified epitopes

    Deep Sequencing Reveals Direct Targets of Gammaherpesvirus-Induced mRNA Decay and Suggests That Multiple Mechanisms Govern Cellular Transcript Escape

    Get PDF
    One characteristic of lytic infection with gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and murine herpesvirus 68 (MHV68), is the dramatic suppression of cellular gene expression in a process known as host shutoff. The alkaline exonuclease proteins (KSHV SOX, MHV-68 muSOX and EBV BGLF5) have been shown to induce shutoff by destabilizing cellular mRNAs. Here we extend previous analyses of cellular mRNA abundance during lytic infection to characterize the effects of SOX and muSOX, in the absence of other viral genes, utilizing deep sequencing technology (RNA-seq). Consistent with previous observations during lytic infection, the majority of transcripts are downregulated in cells expressing either SOX or muSOX, with muSOX acting as a more potent shutoff factor than SOX. Moreover, most cellular messages fall into the same expression class in both SOX- and muSOX-expressing cells, indicating that both factors target similar pools of mRNAs. More abundant mRNAs are more efficiently downregulated, suggesting a concentration effect in transcript targeting. However, even among highly expressed genes there are mRNAs that escape host shutoff. Further characterization of select escapees reveals multiple mechanisms by which cellular genes can evade downregulation. While some mRNAs are directly refractory to SOX, the steady state levels of others remain unchanged, presumably as a consequence of downstream effects on mRNA biogenesis. Collectively, these studies lay the framework for dissecting the mechanisms underlying the susceptibility of mRNA to destruction during lytic gammaherpesvirus infection

    HIV-1 Envelope Subregion Length Variation during Disease Progression

    Get PDF
    The V3 loop of the HIV-1 Env protein is the primary determinant of viral coreceptor usage, whereas the V1V2 loop region is thought to influence coreceptor binding and participate in shielding of neutralization-sensitive regions of the Env glycoprotein gp120 from antibody responses. The functional properties and antigenicity of V1V2 are influenced by changes in amino acid sequence, sequence length and patterns of N-linked glycosylation. However, how these polymorphisms relate to HIV pathogenesis is not fully understood. We examined 5185 HIV-1 gp120 nucleotide sequence fragments and clinical data from 154 individuals (152 were infected with HIV-1 Subtype B). Sequences were aligned, translated, manually edited and separated into V1V2, C2, V3, C3, V4, C4 and V5 subregions. V1-V5 and subregion lengths were calculated, and potential N-linked glycosylation sites (PNLGS) counted. Loop lengths and PNLGS were examined as a function of time since infection, CD4 count, viral load, and calendar year in cross-sectional and longitudinal analyses. V1V2 length and PNLGS increased significantly through chronic infection before declining in late-stage infection. In cross-sectional analyses, V1V2 length also increased by calendar year between 1984 and 2004 in subjects with early and mid-stage illness. Our observations suggest that there is little selection for loop length at the time of transmission; following infection, HIV-1 adapts to host immune responses through increased V1V2 length and/or addition of carbohydrate moieties at N-linked glycosylation sites. V1V2 shortening during early and late-stage infection may reflect ineffective host immunity. Transmission from donors with chronic illness may have caused the modest increase in V1V2 length observed during the course of the pandemic

    Stabilization of Scandium Terephthalate MOFs against Reversible Amorphization and Structural Phase Transition by Guest Uptake at Extreme Pressure

    Get PDF
    Previous high-pressure experiments have shown that pressure-transmitting fluids composed of small molecules can be forced inside the pores of metal organic framework materials, where they can cause phase transitions and amorphization and can even induce porosity in conventionally nonporous materials. Here we report a combined high-pressure diffraction and computational study of the structural response to methanol uptake at high pressure on a scandium terephthalate MOF (Sc2BDC3, BDC = 1,4-benzenedicarboxylate) and its nitro-functionalized derivative (Sc2(NO2–BDC)3) and compare it to direct compression behavior in a nonpenetrative hydrostatic fluid, Fluorinert-77. In Fluorinert-77, Sc2BDC3 displays amorphization above 0.1 GPa, reversible upon pressure release, whereas Sc2(NO2–BDC)3 undergoes a phase transition (C2/c to Fdd2) to a denser but topologically identical polymorph. In the presence of methanol, the reversible amorphization of Sc2BDC3 and the displacive phase transition of the nitro-form are completely inhibited (at least up to 3 GPa). Upon uptake of methanol on Sc2BDC3, the methanol molecules are found by diffraction to occupy two sites, with preferential relative filling of one site compared to the other: grand canonical Monte Carlo simulations support these experimental observations, and molecular dynamics simulations reveal the likely orientations of the methanol molecules, which are controlled at least in part by H-bonding interactions between guests. As well as revealing the atomistic origin of the stabilization of these MOFs against nonpenetrative hydrostatic fluids at high pressure, this study demonstrates a novel high-pressure approach to study adsorption within a porous framework as a function of increasing guest content, and so to determine the most energetically favorable adsorption sites

    The electronic structure and band hybridization of Co/Ti doped BaFe\u3csub\u3e12\u3c/sub\u3eO\u3csub\u3e19\u3c/sub\u3e

    Get PDF
    We identify contributions to the valence band of the nanosized BaFe12−2xCoxTixO19 barium ferrite particles, from the cobalt and titanium dopants. Resonant photoemission results show that cobalt and titanium dopants strongly hybridize with the barium ferrite matrix. Fano resonances are identified in the valence band region, at the Ba (5s), Ti (3p) and Co (3p) thresholds, and there are significant contributions to the density of states, residing within 2 eV of the Fermi level, from barium and/or iron

    Prevalence of parvovirus B19 in endogenous uveitis

    No full text

    Surface Segregation in Multicomponent Clusters

    Get PDF
    Nanostructured materials are not immune from surface segregation, as can be shown for solid samples made from nanosized BaFe12–2xCoxTixO19 barium ferrite particles and a variety of free clusters. Both theory and experiment provide ample demonstration that very limited dimensions of very small clusters does not necessarily impart stability against surface and grain boundary segregation. In fact, with the larger surface to volume ratio in small clusters and lower average atomic coordination, we anticipate that compositional instabilities in small clusters will readily occur
    • …
    corecore